

28th IAEA Fusion Energy Conference (FEC2020) 10-15 May 2021

Improved Prediction Scheme for Turbulent Transport by Combining Machine Learning and First-Principle Simulation

Masanori Nunami1,2,

S. Toda1,3, M. Nakata1,3, H. Sugama1,4

1 National Institute for Fusion Science 2Nagoya University 3SOKENDAI 4The University of Tokyo

Supported in part by JSPS KAKENHI (20K03907, 18H01202, 19H01879, and 19K0380), by NIFS Collaborative Research Program (20KNST161), and by MEXT "Program for Promoting Researches on the Supercomputer Fugaku"

Introduction

- § **Transport of magnetic confined plasmas**
	- Turbulences dominate the plasma transport. \Rightarrow "Anomalous transport"
	- **•** The turbulences are driven by micro-instabilities. (Ion temperature gradient mode, Trapped electron mode, …)
	- Gyrokinetic (GK) model is reliable tool for analyses of turbulent transport

§ **GK simulations**

- To treat 5D distribution function \Rightarrow Huge resources are required.
- Using recent supercomputers, (local) GK sims come to be able to compute quantitative turbulent transport levels against experiments.

Introduction

§ **Flux-matching technique**

- Quantitative transport analyses are based on "flux-matching".
- § GENE had been performed within experimentally acceptable ranges of grad-T in DIII-D case. (Görler+, 2014)
- The technique takes advantage of (local) GK sims that local parameters (grad-*T*, -*n*, …) should be treated as input parameters.

Procedure :

- (1) Clarify dependences of transport coefficient on local params from many GK sims.
- (2) Find matched point with experimental flux
- (3) At matched local params, perform GK sim, again
- **(4)Quantitative agreement with experiment !**

Introduction

§ **Flux-matching technique**

■ For multi-species/-fluxes case, the flux-matching becomes to be complicated.

Issues in quantitative estimates of turbulent transport

§ **GK sims as a first-principle approach**

- NL GK simulations using flux-matching technique can reproduce the experimental transport fluxes, quantitatively.
- To obtain matched plasma profiles (inputs), we need many nonlinear (NL) GK runs. ex) In case of Q_i' s and Q_e ; $\;$ > 30 NL runs
- For quantitative estimates with GK sims, numerous runs should be performed.
- \Rightarrow This is a crucial issue in quantitative transport prediction.

Issues in quantitative estimates of turbulent transport

§ **Reduced transport model to reproduce results of NL GK sims**

- To clarify the dependences of transport flux on local params., based on many GK simulation results and/or linear analyses, the reduced transport model **which can reproduce the results of NL GK simulations** has been constructed.
- Reduced models have necessarily prediction errors.
- \Rightarrow This remains crucial issue in quantitative transport prediction.

A new scheme to predict turbulent transport

To reduce calculation costs and keep prediction accuracies, a new scheme is developed combining first-principle sims, reduced transport model, and **"optimization"** technique employed in machine learning.

§**Optimization technique is applied**

- Optimization technique is applied two times in the developed scheme
	- Find relevant input parameters for firstprinciple sim. near matched region.
	- Optimize the transport model using results of first-principle sim.

⇒ **Turbulent transport can be predicted by first-principle simulations as few times as possible.**

Mathematical Optimization

- Optimization is the main technique in machine learning as minimization of some loss function on a training set of examples.
- Opt. is to find the selection of a best element, with regard to some criterion, from some set of available alternatives.
- There are many algorithms for optimization techniques.
	- § **Gradient descent** : First-order iterative optimization algorithm for finding a local minimum of a differentiable function
	- § **Stochastic gradient descent (SDG)** : Stochastic approximation of gradient descent optimization
	- **RMSProp** : A method in which the learning rate is adapted for each of the parameters
	- § **Adaptive moment estimation (Adam)** : An update to the RMSProp optimizer with moment method

For simplicity, we consider **ITG turbulence simulations for LHD plasma** w/ adiabatic electron.

- § **Start: A reduced transport model for ion heat transport**
	- Based on many GK sims, ion heat diffusivity can be represented by

$$
\frac{\chi_\text{i}^\text{model}}{\chi_\text{i}^\text{GB}} = \frac{A_1 \mathcal{L}^{\alpha_0}}{A_2 + \tau_\text{ZF} / \mathcal{L}^{1/2}} \frac{\mathcal{L}(\rho) = a(\rho) \left[\frac{R}{L_{Ti}} - \beta_0 \frac{R}{L_{Ti}^\text{cr}} \right]}{\frac{R}{L_{Ti}} - \beta_0 \frac{R}{L_{Ti}^\text{cr}}} \Big|_{\substack{A_2 = 5.1 \times 10^{-1} \\ \alpha_0 = 0.38 \\ \beta_0 = 1.0}}
$$

 $($ \Rightarrow The reduced models have certainly errors from ordinal GK sims.)

§ **Procedure of the scheme**

① From initial model,

§ **Procedure of the scheme**

 $\circled{1}$ From initial model, find the grad- T_i which matches with experimental flux by optimization technique (**Gradient descent**).

§ **Procedure of the scheme**

- \circ From initial model, find the grad- T_i which matches with experimental flux by optimization technique (Gradient descent).
- ② At the estimated gradient, we perform **one NL GK simulation for each** ρ **.**

- $\textcircled{1}$ From initial model, find the grad- T_i which matches with experimental flux by optimization technique.
- ② At the estimated gradient, we perform one NL GK simulation for each ρ .
- ③ Using the NL results, tune the parameters $\alpha_0 \rightarrow \alpha$ and $\beta_0 \rightarrow \beta$, the model is optimized (using **Adam optimizer**).

$$
\frac{\chi_\mathrm{i}^\mathrm{model}}{\chi_\mathrm{i}^\mathrm{GB}} = \frac{A_1\mathcal{L}^{\alpha_0}}{A_2 + \tau_\mathrm{ZF}/\mathcal{L}^{1/2}}
$$

- $\textcircled{1}$ From initial model, find the grad- T_i which matches with experimental flux by optimization technique.
- ② At the estimated gradient, we perform one NL GK simulation for each ρ .
- ③ Using the NL results, tune the parameters $\alpha_0 \rightarrow \alpha$ and $\beta_0 \rightarrow \beta$, the model is optimized (using Adam optimizer).

$$
\frac{\chi_\mathrm{i}^\mathrm{model}}{\chi_\mathrm{i}^\mathrm{GB}} = \frac{A_1\mathcal{L}^{\alpha_0}}{A_2 + \tau_\mathrm{ZF}/\mathcal{L}^{1/2}} \; \mathcal{L}(\rho) = a(\rho
$$

④ **Using the optimized model, we can predict turbulent transport fluxes.**

R/L

 L_{T_1}

 $\begin{bmatrix} R \end{bmatrix}$

*T*i

Against nonlinear simulations

■ The optimized model's results quite agree with the original nonlinear results!

Convergences of the optimization

■ From the convergences of the tuning parameters and the resultant heat diffusivities in the iterations, the first trial run of the first-principle simulation is enough to construct the optimized model for each radial position. 1.0 \circ $_0$, β / β_0

Because the first employed optimization technique via the initial transport model can guess the relevant grad- T_i which is close to the guess from the first-principle runs, independently.

Application to transport analysis

- For analysis of profile evolutions, it is impossible to perform NL GK runs every time for each time step.
- ⇒ We employ the **Optimized transport model** instead of performing GK sims.

■ Transport dynamics is examined for LHD plasma using the optimized model, performing integrated transport simulation by TASK3D [Wakasa+, JJAP 2007].

28th IAEA Fusion Energy Conference (FEC2020) Masanori Nunami (NIFS, Japan) 17

Application to transport analysis

Example 3 Stationary radial profiles of χ_i

- Result from the optimized model are larger than initial model for whole region because of differences of dependences on grad-*T*ⁱ between both models.
- \Rightarrow The optimized transport model may contribute to relax T_i profile.

■ Ion temperature profile

■ It can be confirmed that the result using the optimized transport model realizes the relaxed radial profile of T_i compared with the initial model.

We can perform the transport analysis with almost same accuracies of NL GK runs.

Summary

§**Quantitative estimates of turbulent transport**

- In GK sims as a first-principle approach, numerous runs should be demanded in terms of flux-matching.
- Reduced models have prediction errors essentially.

§ **A new scheme to predict turbulent transport**

- We combine first-principle sims, reduced transport model, and optimization technique.
- By GK runs as few times as possible, turbulent transport can be estimated with almost same levels of performing many GK runs.

§ **Application to transport analysis**

■ With almost same accuracies of GK runs, we can perform the transport analysis.