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Introduction

* Transport of magnetic confined plasmas
= Turbulences dominate the plasma transport. = “Anomalous transport”

* The turbulences are driven by micro-instabilities.
(lon temperature gradient mode, Trapped electron mode, ...)

= Gyrokinetic (GK) model is reliable tool for analyses of turbulent transport

» GK simulations
* To treat 5D distribution function = Huge resources are required.
» Using recent supercomputers, (local) GK sims come to be able to compute
quantitative turbulent transport levels against experiments.
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Introduction

* Flux-matching technique

= Quantitative transport analyses are based on ”flux-matching”.
= GENE had been performed within experimentally acceptable ranges of
grad-T in DIII-D case. (Gorler+, 2014)

* The technique takes advantage of (local) GK sims that local parameters
(grad-T, -n, ... ) should be treated as input parameters.

Procedure:

(1) Clarify dependences of transport
coefficient on local params from
many GK sims.

(2) Find matched point with
experimental flux

Transport coefficient

(3) At matched local params,
perform GK sim, again

(4) Quantitative agreement

Ry/ Ly
with experiment ! lon temperature gradients

pJ
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Introduction

* Flux-matching technique

= For multi-species/-fluxes case, the flux-matching becomes to be
complicated.
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Issues in quantitative estimates of turbulent transport

* GK sims as a first-principle approach

= NL GK simulations using flux-matching technique can reproduce the
experimental transport fluxes, quantitatively.

» To obtain matched plasma profiles (inputs),
we need many nonlinear (NL) GK runs. '8
ex)In case of Q/sand Q.; >30NLruns s

1.3

1.2

" For quantitative estimates with GK sims,
numerous runs should be performed.

1.1
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= This is a crucial issue in quantitative
transport prediction.
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Issues in quantitative estimates of turbulent transport

NL GK results

* Reduced transport model to reproduce results of NL GK sims

15

Z.IxC8

based on many GK simulation results and/or linear analyses,
the reduced transport model which can reproduce the results of NL GK
simulations has been constructed.

transport predicti
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» Reduced models have necessarily prediction errors.

* To clarify the dependences of transport flux on local params.,
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A new scheme to predict turbulent transport

To reduce calculation costs and keep prediction accuracies, a new scheme is
developed combining first-principle sims, reduced transport model,
and “optimization” technique employed in machine learning.

C Target Plasma )
- Optim ization teChn ique iS appl ied Heating, field config., particle species, ...

. . . . . )
= Optimization technique is applied

two times in the developed scheme

Optimization technique
* Find relevant input parameters for first- @ Trialrun ‘
. . . . Init.
principle sim. near matched region. Firstprinciple DAPL. L
simulation

= Optimize the transport model using Lyt

. L. . Optimized transport model: y;°P
results of first-principle sim.

/
= Turbulent transport can be predicted

by first-principle simulations as few times as possible.

6
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Mathematical Optimization

= Optimization is the main technique in machine learning as minimization of
some loss function on a training set of examples.

= Opt. is to find the selection of a best element, with regard to some
criterion, from some set of available alternatives.

* There are many algorithms for optimization techniques.

= Gradient descent : First-order iterative optimization algorithm for finding a

local minimum of a differentiable function Y
» Stochastic gradient descent (SDG) : Stochastic approximation :Z g..
of gradient descent optimization a2
2 3
= RMSProp : A method in which % "y 37
i i o oL
the learning rate is adapted for (‘ $ 't " T

Y,
S ORTTIPHEND
each of the parameters W&Q,’!‘A%m’/ .
= Adaptive moment estimation (Adam) : \ = .
An update to the RMSProp optimizer

with moment method

Parameter space
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The new scheme

For simplicity, we consider ITG turbulence simulations for LHD plasma w/ adiabatic electron.

= Start: Areduced transport model for ion heat transport
= Based on many GK sims, ion heat diffusivity can be represented by

A; = 1.8 x 10!

R R _
L(p) = a(p) { — Bo—— Ay =5.1x1071
L L%, ao = 0.38
(Toda+, JPCS 2014) Po = 1.0
Dependences of x; on Ry/Ly; NL GK results at Matched-parameter (R,/Ly;) from the model
_ ; : 4.0
20} 1 AT
L K ] @ ‘
g N
) §, 2.0
= 10 = —F— Experiment
------- Model initial guess ' A Initial matching
| p:065 ; 00 | | 1 1 1 1
0 i . ] 04 0.6 0.8 1.0
0 10 20 30 P
Ry /Ly,

= GK results at “matched parameter”
don’t match the experimental results.

( =The reduced models have certainly errors from ordinal GK sims.)
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The new scheme

= Procedure of the scheme

(D From initial model,

20r
2}
O ..
=
= 10

------- Model initial guess
[ [p=0.65
. g . . |
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The new SCheme nQFQi(eXP)

Initial model-

* Procedure of the scheme | .
| | =
‘; |20
- el . . \ |
@ From initial model, find the grad-T; which SR |
matches with experimental flux by 0 %
optimization technique (Gradient descent).
1T T T
\
L \ J J
\
20} \ |
\ §
| Y |
\‘ :.'
%}E \\\‘:::
AN
:< 10' ‘~~~~_Q.,-=-Q(exp)
------ Model initial guess
 [p=0.65
0 1 V 1 l
0 10 20 30
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The new scheme
= Procedure of the scheme
@ From initial model, find the grad-T; which

matches with experimental flux by W<
optimization technique (Gradient descent). P05

(@ At the estimated gradient, we perform
one NL GK simulation for each p.

201
S |
x L
:{ 10_‘ 2
------ Model initial guess
 [p=0.65
, |
0
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The new scheme

= Procedure of the scheme

@ From initial model, find the grad-T; which
matches with experimental flux by
optimization technique.

(@ At the estimated gradient, we perform
one NL GK simulation for each p.

1.0~

Masanori Nunami (NIFS, Japan)

P Optlmlzed model

@ Using the NL results, tune the parameters _ Fd
. . . S/ |la/ag=0.89
o, — o and B, — B, the model is optimized 20} £/ | 8/6g = 0.92
(using Adam optimizer). ' / /
m 3
R R O 74
L(p) = a(p) T Goger| R ¢ g -
1 Ti ~
El-f----- Model initial guess
A II ----- Model learned guess
O II': 1 1 I
0 10 30
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The new scheme

= Procedure of the scheme

@ From initial model, find the grad-T; which
matches with experimental flux by
optimization technique.

(@ At the estimated gradient, we perform
one NL GK simulation for each p.

@ Using the NL results, tune the parameters

o, — o and B, — B, the model is optimized
(using Adam optimizer).

£(6) = a(p) | 1 = o

@ Using the optimized model, we can predict
turbulent transport fluxes.

Masanori Nunami (NIFS, Japan)

/| a/ao = 0.89
': / ﬁ/,@o = 0.92

e ]
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Against nonlinear simulations

* The optimized model’s results quite agree with the original nonlinear results!

i T T T 7 1C T T T T 7 1L T T T T i
| p=046 . 7/ 11 p=0.65 S 6 1} p=083 ;o
— : / = i . : / - - : —
20 U / ) / U /
- :d/ ..'/ /9 Vs
e | i 1l & 1l $ ]
~ 10F ;.! """ Initial model / 1F ? -
= [ == == ' Optimized model # 1T b i
: g ¢ Trial GK runs p' : .q ]
I . o Original GK sims. . 1L I.'
0 . k | . 1 . I . ‘_-' . | . . | I:. | .
0 10 20 30 10 20 30 10 20 30
R,/ Ly R,/ Ly R,/ Ly
Relative errors
Matched-parameters for grad-T; NL GK results at “Matched-parameters” 5
[ T T T T T ] T T T T T . 1 X{nOdel
@) I 40f®) . U:\IEZ< — —1>
20.0F A Guess by initial model 4 — I A A A T Xi
(| © Guess by optimized model f 1 N@ B OOA 6 e -
5 © _ Guess by NL sims. Ezo- & -8 w/ initial model only
~ I | A Initial prediction | .. S
o I é 6 | = | | € Optimized prediction _ Tinital = 0°35
10.0-_ é e h | |==-O - Prediction by NL sims. | W/ Optimized model
L uess sims. ] 0.0 I I I I I
| 6? | S/Ikinelzjt?cl\e]fectrons 1 0.4 0.6 0.8 o-Opt - 0.095
0.4 0.6 0.8 p .
p By a few GK runs, we can predict transport

fluxes with almost same levels of NL runs.
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Convergences of the optimization

* From the convergences of the tuning parameters and
the resultant heat diffusivities in the iterations,

the first trial run of the first-principle
simulation is enough to construct
the optimized model for each radial
position.

Because the first employed optimization
technique via the initial transport model
can guess the relevant grad-T; which is
close to the guess from the first-principle
runs, independently.

Predictions by orig. NL sims.
—&— Optimized model predictions

terations

Masanori Nunami (NIFS, Japan)
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Application to transport analysis

» For analysis of profile evolutions, it is impossible to perform NL GK runs
every time for each time step.

= We employ the Optimized transport model instead of performing GK sims.

Diffusion equation for ion heat

o /3 1 0
50 (57T ) = =5 5= (V/Q1) + Pox + P
at(2n> Vi ap ! Q)+,‘§+h
/ Heat exchang;\
Absorbed power
lon heat flux aT,

Qi = —(|Vp|*)ni (X" + xP°) —

/ 7
Impossible to perform many GK runs —> Employ optimized model

X:nodLl Alﬁa

xCB  Ag + Tzr/L1/2

* Transport dynamics is examined for LHD plasma using the optimized model,
performing integrated transport simulation by TASK3D [Wakasa+, JJAP 2007].
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Application to transport analysis

8.0r
= Stationary radial profiles of y;
6.0
= Result from the optimized model are _
larger than initial model for whole region < vl
because of differences of dependences <
on grad-T; between both models. Jol
= The optimized transport model may ':
contribute to relax T; profile. 0g
" lon temperature profile
" |t can be confirmed that the result using 4.0
the optimized transport model realizes
the relaxed radial profile of T, compared ~
with the initial model. = ,

We can perform the transport analysis
with almost same accuracies of NL GK runs.

Masanori Nunami (NIFS, Japan)
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Summary

* Quantitative estimates of turbulent transport

* |[n GK sims as a first-principle approach, numerous runs should be
demanded in terms of flux-matching.

* Reduced models have prediction errors essentially.
* A new scheme to predict turbulent transport

= We combine first-principle sims, reduced transport model,
and optimization technique.

= By GKruns as few times as possible, turbulent transport can be
estimated with almost same levels of performing many GK runs.

= Application to transport analysis

= With almost same accuracies of GK runs, we can perform the
transport analysis.



