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Magnetic islands have varied and complex impacts on
plasma confinement in fusion experiments

A large, uncontrolled island may cause confinement degradation
Expts. also show some improved confinement may be link to islands

I'TB formation is usually near a low-order rational surface (home of island)

— favorable weak or reversed magnetic shear

I'TB offers compelling features for steady state tokamak operation
— improved energy confinement

— high bootstrap current



Expts. suggest magnetic island may trigger ITB formation
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(Ida et. al., PoP’04)

e F,. shear layer observed at inner edge of magnetic island

— increasing with island size

— mainly at inner edge (little at outer edge)

— finite radial extension (not so narrow)

e ITB foot point moves with island & reforms (Kenmochi et.al., Sci Rep.’20)

®)PPPL



turbulence + neoclassical physics

e To gain physics insight regarding role of island played in I'TB formation

e To understand plasma self-driven current generation in island geometry
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e C-MOD Ohmic L-mode discharge

e ['T'G-dominated turbulence in core plasma

e prescribed static 2/1 magnetic island at ¢ =2 (r/a = 0.61)
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Magnetic island modifies neoclassical equilibrium and
profiles via fast parallel streaming along island surface
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Island by altering magnetic topology has more significant

effect on E x B flow structure
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Island breaks axisymmetry — alters ambipolarity condition — FE,

weak negative F, — strong positive F,
A stationary E,-“well” formed near island; peaked at inner edge of island
The wider the island, the deeper the E,.-well (the stronger E x B shear)

Shows consistent features with expt. observations (Ida et.al.,PoP’04)

— mainly at island inner boundary; — finite radial extension (not so narrow)
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In addition to strong ZF shear layer, 2/1 potential
structures also forms at the same radial locations
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e Non-resonant & amplitude of 2/1 potentials much higher than turbulence

e Low-n harmonics generated at island center via mode beating
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Strong E X B shear layer formed next to island can
effectively reduce/suppress turbulence in inner core region
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e Strong Reynolds stress gradient across and peaked at inner boundary of island
is observed and likely responsible for continued growth of E x B flow beyond

Wexal __(25q)

neoclassical level

ot or
e Fluctuations are reduced/suppressed from island inner edge extending to core

following growth of zonal flow amplitude (energy) and its shear
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fluctuation (6(1)2)(a.u.)
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e Turbulence spreading causes nonlocal

transport & affects global confinement

e A strong E x B shear layer can
reduce/block turbulence spreading
— transfer to high-k, — dissipation
— reduce toroidal mode-coupling
(Wang et. al., PoP’07;
Grenfell et. al., NF’19)

e Island-induced E x B shear decouples

plasmas inside shear layer from outside
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Radially localized strong E x B shear layer formed next to
island can facilitate transport barrier formation
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e There may exist a critical

island width for triggering I'TB

e Control and optimize island width
and location = usable I'TB

rho

(Ida et. al., PoP’04)



How magnetic island modifies bootstrap current
— a conventional picture
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® j;s is modified according to island-induced profile modification

e Local in island region

e Electron current is reduced in island region but remains finite
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Large change in plasma self-driven current found to relate
to island-induced static low-n (2/1-dominated) modes
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e Large change not only in island region, but also globally

e Static low-n modes (part of 3D ambipolar potential) affect electron flow

but do not impact temperature and density



Electron parallel acceleration by static, non-resonant 2/1
mode (with intrinsic k; # 0) likely very effective
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Magnetic islands may trigger I'TB formation inside a rational magnetic surface

e Island induces a strong localized F,.-well across island inner boundary

(not due to island-induced pressure profile change)

— its shearing rate increases with island width

— strong turbulence-driven Reynolds stress gradient contributes
to continued growth of EE x B flow beyond NC level

e Island also drives large non-resonant 2/1 modes at island edges

e Island-induced E x B shear layer can facilitate ITB formation
— locally suppress turbulence of inner core region

— prevent turbulence spreading from outside into the core

Island-induced static, non-resonant low-n modes may largely change plasma

self-driven current via parallel acceleration of electrons
— both locally and globally; more than change in j;s by island-modified profiles

— helical current is dominant in island region
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BACKUP SLIDES
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Sum of zonal (m/n=0/0) and 2/1 components produces a
potential well aligned with perturbed flux surfaces
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Helical zonal flows akin to magnetic
island formed in island geometry
— poloidal E x B shear flow on perturbed

magnetic surfaces



A helical electron current is generated and dominates in
island region — how this impacts island evolution?
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Electron parallel acceleration by static, non-resonant 2/1
mode (with intrinsic k; # 0) likely very effective
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How turbulence develops in island geometry?
— subtle difference between O- and X-point

e Turbulence starts at X-
point on low-field-side

mid-plane;

e Get into O-point via
turbulence spreading

(images by E. Feibush)

21 %/J PPPL



