
Effects of Magnetic Islands on Plasma
Confinement and Self-driven Current

Generation

W. X. Wang

M. G. Yoo E. Startsev S. Ethier J. Chen

Princeton Plasma Physics Laboratory

28th IAEA Fusion Energy Conference

May 10 - 15, 2021

Ack: U.S. DOE Contract DE-AC02-09-CH11466

SciDAC Tokamak Disruption Simulation project

1



Magnetic islands have varied and complex impacts on
plasma confinement in fusion experiments

• A large, uncontrolled island may cause confinement degradation

• Expts. also show some improved confinement may be link to islands

• ITB formation is usually near a low-order rational surface (home of island)

– favorable weak or reversed magnetic shear

• ITB offers compelling features for steady state tokamak operation

– improved energy confinement

– high bootstrap current
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Expts. suggest magnetic island may trigger ITB formation

(Ida et. al., PoP’04)

• Er shear layer observed at inner edge of magnetic island

– increasing with island size

– mainly at inner edge (little at outer edge)

– finite radial extension (not so narrow)

• ITB foot point moves with island & reforms (Kenmochi et.al., Sci Rep.’20)
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This simulation study employs a global gyrokinetic model
with self-consistent turbulence + neoclassical physics

• To gain physics insight regarding role of island played in ITB formation

• To understand plasma self-driven current generation in island geometry
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• C-MOD Ohmic L-mode discharge

• ITG-dominated turbulence in core plasma

• prescribed static 2/1 magnetic island at q = 2 (r/a = 0.61)

δB = ∇× αB0; α = αmnsin(nφ−mθ); δψp = 4
√
αmn/s
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Magnetic island modifies neoclassical equilibrium and
profiles via fast parallel streaming along island surface
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Island by altering magnetic topology has more significant
effect on E×B flow structure
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• Island breaks axisymmetry → alters ambipolarity condition → Er

weak negative Er → strong positive Er

• A stationary Er-
“well

′′
formed near island; peaked at inner edge of island

• The wider the island, the deeper the Er-well (the stronger E×B shear)

• Shows consistent features with expt. observations (Ida et.al.,PoP’04)

– mainly at island inner boundary; – finite radial extension (not so narrow)

6



In addition to strong ZF shear layer, 2/1 potential
structures also forms at the same radial locations
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• Non-resonant & amplitude of 2/1 potentials much higher than turbulence
• Low-n harmonics generated at island center via mode beating
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Strong E×B shear layer formed next to island can
effectively reduce/suppress turbulence in inner core region
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• Strong Reynolds stress gradient across and peaked at inner boundary of island

is observed and likely responsible for continued growth of E×B flow beyond

neoclassical level
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• Fluctuations are reduced/suppressed from island inner edge extending to core

following growth of zonal flow amplitude (energy) and its shear
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Island-induced E×B shear layer is capable of preventing
turbulence spreading
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• Turbulence spreading causes nonlocal

transport & affects global confinement

• A strong E×B shear layer can

reduce/block turbulence spreading

– transfer to high-kr → dissipation

– reduce toroidal mode-coupling

(Wang et. al., PoP’07;

Grenfell et. al., NF’19)

• Island-induced E × B shear decouples

plasmas inside shear layer from outside
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Radially localized strong E×B shear layer formed next to
island can facilitate transport barrier formation
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(Ida et. al., PoP’04)
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• There may exist a critical

island width for triggering ITB

• Control and optimize island width

and location ⇒ usable ITB
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How magnetic island modifies bootstrap current
– a conventional picture
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• jbs is modified according to island-induced profile modification

• Local in island region

• Electron current is reduced in island region but remains finite
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Large change in plasma self-driven current found to relate
to island-induced static low-n (2/1-dominated) modes
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• Large change not only in island region, but also globally

• Static low-n modes (part of 3D ambipolar potential) affect electron flow

but do not impact temperature and density
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Electron parallel acceleration by static, non-resonant 2/1
mode (with intrinsic k‖ �= 0) likely very effective
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• Helical current is generated and

dominates in island region
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Summary

Magnetic islands may trigger ITB formation inside a rational magnetic surface

• Island induces a strong localized Er-well across island inner boundary

(not due to island-induced pressure profile change)

– its shearing rate increases with island width

– strong turbulence-driven Reynolds stress gradient contributes

to continued growth of E×B flow beyond NC level

• Island also drives large non-resonant 2/1 modes at island edges

• Island-induced E×B shear layer can facilitate ITB formation

– locally suppress turbulence of inner core region

– prevent turbulence spreading from outside into the core

Island-induced static, non-resonant low-n modes may largely change plasma

self-driven current via parallel acceleration of electrons

– both locally and globally; more than change in jbs by island-modified profiles

– helical current is dominant in island region
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BACKUP SLIDES

BACKUP SLIDES

15



Sum of zonal (m/n=0/0) and 2/1 components produces a
potential well aligned with perturbed flux surfaces
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Sum of zonal (m/n=0/0) and 2/1 components produces a
potential well aligned with perturbed flux surfaces
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• Helical zonal flows akin to magnetic

island formed in island geometry

– poloidal E×B shear flow on perturbed

magnetic surfaces
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A helical electron current is generated and dominates in
island region – how this impacts island evolution?
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Wider island results in stronger fluctuation suppression in
inner region by forming a deeper Er well
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Electron parallel acceleration by static, non-resonant 2/1
mode (with intrinsic k‖ �= 0) likely very effective
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• Helical current is generated and

dominates in island region
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How turbulence develops in island geometry?
– subtle difference between O- and X-point
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t=9.94τei t=9.94τei

O O
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• Turbulence starts at X-

point on low-field-side

mid-plane;

• Get into O-point via

turbulence spreading

(images by E. Feibush)
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