Cea

Plasma–Boundary Interplay: incidence on <u>edge turbulence</u> organisation & <u>barrier formation</u>

<u>G. Dif-Pradalier¹</u>, Ph. Ghendrih¹, Y. Sarazin¹, F. Widmer², Y. Camenen², X. Garbet¹, Y. Munschy¹, V. Grandgirard¹, R. Varennes¹, L. Vermare³

CEA, IRFM, France
 Aix Marseille Université, France
 LPP, Ecole Polytechnique, France

Ackn .: Festival de Théorie, Aix-en-Provence

A major motivation: describe and understand whereby bifurcations to improved confinement occur

- spontaneous transitions come in many flavours: ITBs, yy-modes
 - $yy \in \{H; I; QH; VH; ...\}$

- common grounds: self-reinforcing feedback

 - onset of differential rotation
 steepening of ∇p_i
 electric field well (or hill) → shear-induced bifurcation [Biglari PF 90, ...]
- ▶ narrow region, especially plasma edge → boundary conditions

Global impact of localised boundary interactions is a classical problem

- <u>fluids:</u> Prandtl ; swirling flows [torque vs. velocity [Saint-Michel PRL 13]] ↔ forcing
- MFE: upstream [core & edge] impact of magn. connection to bound. [SOL/wall] [known importance of wall conditioning, recycling, etc.]
- **•** this work: propagation of information? core \leftrightarrow edge \leftrightarrow SOL? mechanisms? relevance to global confinement? [Spoiler: there is a strong interplay]

Our goal: understand turbulence dynamics in L-mode edge

[from where bifurcation to H-mode occurs]

this talk understand turbulence <u>dynamics in L-mode edge</u> → important prerequisite for understanding edge bifurcation(s)

- Several (related) conundrums
- is there an intrinsic problem [NM'sL?] with the plasma edge?
 - $\, \downarrow \,$ where does edge turb. come from?
- Important turb. properties: all locally-determined?
- what presides over the onset of edge transport barrier? Mechanism(s)?

[Gorler PoP 14]

- equil. gradient length \sim (few ρ_i) \Rightarrow scale separations break down near edge (gradient scale $\leftrightarrow F_{eq}$) \Rightarrow (turb.scale $\leftrightarrow \delta f \equiv F F_{eq}$)
- profiles ≡ <u>large uncertainties</u> in edge; <u>poorly known</u> in SOL
 ↓ flux-driven desirable
 ⇒ propagation of information on global scales
 ⇒ add. symm.-breaking mechanisms edge turb.
- magnetic connection to material boundaries
 - \downarrow expect E_r shear $(\nabla p/n \text{ vs. } -\nabla T_e) \Rightarrow$ incidence on transp. barrier onset?

<u>Framework:</u> **"minimally" relevant model** to understand turbulence dynamics in L-mode edge?

 $Framework \equiv GYSELA$

[Grandgirard JCP 06 & CPC 16 ; Caschera JPCS 18]

- flux-driven profile evolution
- global domain $0 \leqslant r/a \leqslant 1.3$
- poloidally-localised toroidal limiter $1 \leqslant r/a \leqslant 1.3$

• kinetic trapp. elec \rightarrow adiab. elec.

→ modified QN eq. in SOL Bohm cond. forced: $\delta n_e/n_e \rightarrow e\phi/T_e - \Lambda$

no transport of mass
transport of energy & momentum
→ "minimal state" / "baseline" instab.

<u>Framework:</u> **"minimally" relevant model** to understand turbulence dynamics in L-mode edge?

Framework \equiv GYSELA

[Grandgirard JCP 06 & CPC 16 ; Caschera JPCS 18]

$$D \mathbf{F}_{s} = C (\mathbf{F}_{s}) + S_{heat} (\mathbf{F}_{s}) - \nu M_{lim} (\mathbf{F}_{s} - \mathbf{F}_{lim}) \& \Sigma_{i} Z_{i} \delta n_{i} = \delta n_{e}$$

- flux-driven profile evolution
- global domain $0 \le r/a \le 1.3$
- poloidally-localised toroidal limiter $1 \leqslant r/a \leqslant 1.3$

 $\label{eq:constraint} \begin{matrix} \mbox{ penalisation technique} \equiv Krook \mbox{ op.} \\ in gyrokinetic eq. rhs \qquad \mbox{ [Isoardi JCP 10]} \end{matrix}$

• kinetic trapp. elec \rightarrow adiab. elec. \rightarrow modified QN eq. in SOL Bohm cond. forced: $\delta n_e/n_e \rightarrow e\phi/T_e - \Lambda$

• circular **B** geometry; electrostatic; $\rho_{\star} = 1/300$; with collisions

Systematic comparison TS#45511

[Dif-Pradalier, under review]

poloidal (a)symmetry

- "linear"
- NM'sL
- **1** transport barrier [vorticity dyn.]

Flux-driven & limiter b.c.

lux-driven 8

7

Edge unconditionally stable, destabilised by limiter

linear analysis of GYSELA profiles with local GKW [Peeters CPC 09]

- edge **unconditionally stable** <u>without</u> limiter
- edge **destabilised** locally (r, θ) with limiter

> interesting situation: turbulence organisation in edge? investigate $\delta n/n$

Turbulence organisation in the plasma edge?

- quality fast-swept reflectometry measurements [Clairet RSI 2011]
- mimic conditions TS #45511 \rightarrow synth. diag. for GYSELA: $\theta = 0 \pm 4^{\circ}$

Turbulence organisation in the plasma edge?

forcing & boundary conditions \underline{key}

- reasonable trend with limiter;
- shortfall without;
- spreading ["contamination"] key
 [Mattor; Garbet; Hahm; ...; Singh]
- \blacktriangleright sensitivity scans \rightarrow robust concl.

explain fluct. levels with limiter?

Wave-energy budget to quantify self-advection of turb. patches

 wave energy budget: conserved quantity (n · 1) [the fewer the oscillators, the larger the oscillations] [Matter PRL 94; Gu

[Mattor PRL 94; Gurcan NF 13; Gillot JPP 20]

$$\left(\frac{\partial}{\partial_t} + \overline{\mathbf{v}}_{E,\theta}\frac{\partial}{\partial_\theta}\right)(nI) + \nabla \cdot \Gamma_I = \mathsf{Inj} - \mathsf{Diss.}$$

• wave-energy flux: kinetic proxy for spatial turbulence spreading

$$\Gamma_{I}(r,\theta,t) \equiv \left\langle \int d^{3} v (\mathbf{v}_{E \times B} \cdot \nabla r) \frac{\tilde{f}^{2}}{F_{M}} \right\rangle$$

procedure:

- limiter-borne poloidal asymm. \rightarrow growing patches of turb. intensity near LCFS.
- chose nonlin. time reference t_{ref} \downarrow investigate systematic spreading increments $\Delta S \equiv \Gamma_l(r, \theta, t) - \Gamma_l(r, \theta, t_{ref})$
- times series of poloidal cross-sections of ΔS
 - $\Delta S \ge 0 \quad \rightarrow \quad \text{radially-outward fluxes of turbulence intensity}$
 - $\Delta S \leqslant 0 \rightarrow$ inward fluxes of turb. intensity

Limiter-borne fluctuations contaminate outer edge in staged polo. sequence; then LCFS[in]–core[out] cyclic equilibration

Persistent transport barrier @ closed–open field line interface → mechanism? assess causality?

• Mechanisms/causality? → Transfer Entropy

[Schreiber PRL 00;... VanMilligen NF 14; Nicolau PoP 18]

• $\langle v_{\star r} \Omega_r \rangle \rightarrow \Omega_r$ dominant flow of information \downarrow pressure θ -inhomog. & FLR [Dif-Pradalier, submitted]

Spontaneous E_r build-up & sustainment \mapsto (r, θ) vorticity balance [Sarazin PPCF 21] $\partial_t \left< \Omega_r \right> + \underbrace{\partial_r \left< v_{Er} \Omega_r \right>}_{\text{Reynolds force}} + \underbrace{\partial_r \left< v_{\star r} \Omega_r \right>}_{\text{diamagn.}} + \dots \approx 0$ with $\Omega_r = -E'_r$; $v_{\star r} = -\frac{1}{r} \partial_\theta p_\perp$ 2 8 0 4 6 6

Conclusions: evidence for SOL-edge-core interplay enlightens "shortfall conundrum" & transp. barrier onset/sustainment

- ▶ penalised limiter → simplified SOL miss $e^- \parallel$ dynamics; convection & neutrals
- ➤ interplay SOL, edge & core

≻

- \rightarrow spontaneous persistent **transport barrier** $\equiv E_r$ build-up;
- \rightarrow with limiter: no "shortfall" \equiv clarifies spreading controversy
 - poloidal asymmetry (cold region...)
 edge-to-core then cyclic edge→core & core→edge
- \rightarrow <u>w/o limiter</u>: edge stable & strong "shortfall" in NM'sL

Turbulence **not only locally driven** by local gradients but 'nonlocally' controlled by **fluxes of turb.** activity, primarily (though not exclusively) coming **from the edge** & mediated thru **interplay with material bound.**

► early transp. barrier build-up $\rightarrow \langle v_{Er}\Omega_r \rangle \& \langle v_{\star r}\Omega_r \rangle$ key to E_r growth

Assess flow of information in early stages of transp. barrier build-up \rightarrow <u>FLR effects</u> & limiter-borne $\nabla p(\theta)$ are key players

$$TE_{Y \to X}(k) = \sum p(x_{n+1}, x_{n-k}, y_{n-k}) \log \left(\frac{p(x_{n+1}|x_{n-k}, y_{n-k})}{p(x_{n+1}|x_{n-k})} \right)$$

▶ directional: net flow of information Δ_{X,Y}(*TE*) ≡ *TE*_{Y→X} − *TE*_{X→Y}
 ▶ time series X, Y ∈ {Ω_r, ⟨v_{Er}Ω_r⟩, ⟨v_{*r}Ω_r⟩, ...}

<u>W/o limiter</u>: shortfall in stable edge not cured through combination of core spreading \oplus modif. of local params.

No cure observed with:

- increased resolution
- $\nearrow T_e/T_i$ ratio
- \searrow safety factor q [\searrow magn. shear]
- $\searrow \nabla n_i$

How to explain fluct. levels with limiter?

Limiter-borne fluctuations contaminate outer edge in staged polo. sequence; then LCFS[in]–core[out] cyclic equilibration

<u>Limiter-borne</u> fluctuations contaminate outer edge in staged polo. sequence; then LCFS[in]–core[out] cyclic equilibration

<u>Disentangling all contrib.</u>: weight of limiter-borne fluct.; edge \rightarrow core & core \rightarrow edge spreading

- $\mathbf{0}$ $\mathbf{0} \equiv$ importance of near-LCFS turbulence & outside-in spreading
- $\boldsymbol{\varTheta}$ $\boldsymbol{\varTheta}\equiv$ importance of inside–out spreading, amplified "beach effect"
- overpredict turb. activity $0.55 \leqslant r/a \leqslant 0.75 \rightarrow$ GD impedes redistribution $r/a \geqslant 0.8$ & $r/a \leqslant 0.4$
- redistribution of turb. intensity bridges free energy injection near limiter \rightarrow upstream confined core

Spontaneous & persistent transport barrier @ closed-open field line interface \rightarrow mechanism?

Detailed (r, θ) vorticity balance to probe mechanisms for E_r build-up & sustainment mechanisms

• start from GK equation $+ \mathbf{E} \times \mathbf{B}$ velocity + gyroaverage

$$\begin{split} \partial_t \left\langle \Omega \right\rangle + \nabla \cdot \left\langle \Gamma \right\rangle &= rhs \\ \partial_t \left\langle \Omega_r \right\rangle + \underbrace{\partial_r \left\langle v_{Er} \Omega_r \right\rangle}_{\text{Reynolds force}} + \underbrace{\partial_r \left\langle v_{\star r} \Omega_r \right\rangle}_{\text{diamagn.}} + \underbrace{\partial_r \left\langle v_{\star \theta} \frac{1}{r} \partial_{\theta} v_{E\theta} \right\rangle}_{\text{polo. tilt}} \\ &- \partial_t \left\langle \Omega_{\theta} \right\rangle - \frac{1}{r} \partial_{\theta} \left\langle (v_{E\theta} + v_{\star \theta}) \Omega_{\theta} \right\rangle - \partial_r \frac{1}{2r} \partial_{\theta} \left\langle v_{E\theta}^2 \right\rangle \\ &+ \frac{1}{2r^3} \partial_{\theta} \partial_r \left\langle r^2 v_{Er}^2 \right\rangle - \frac{1}{r} \partial_{\theta} \left\langle v_{\star r} \frac{1}{r} \partial_{\theta} v_{E\theta} \right\rangle + rhs \end{split}$$

Persistent transport barrier @ closed–open field line interface → mechanism?

Active mechanism for persistent transport barrier @ LCFS: $\langle v_{\star r} \Omega_r \rangle \equiv$ diamagn. currents sign-discriminate vortices advected

