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Background and our goal
• In order to realize high performance 

burning plasmas it is necessary to 
reduce both energetic alpha-particle 
transport and bulk plasma transport 
simultaneously.

• Drift-wave turbulence and MHD modes 
driven by energetic-particles coexist in 
burning plasmas, thereby the interaction 
between them is expected to take place 
and lead to new transport phenomena.

• We investigate nonlinear interactions 
between the toroidal Alfven eigenmode 
(TAE) driven by energetic particles and 
the electromagnetic drift-wave 
turbulence by using the global 
gyrokinetic simulation code GKENT.
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GKNET code
• Full F gyrokinetic simulation code

• K. Imadera and Y. Kishimoto, IAEA-FEC, TH/P5-8, (2014)
• K. Obrejan, K. Imadera, J. Li and Y. Kishimoto, Plasma Fusion Res., (2015)

• Adiabatic electron response simulation

• Kinetic electrons (delta f gyrokinetic simulation code)
• Z. Qin, K. Imadera, J.Q. Li, and Y. Kishimoto, Plasma Fusion Res., (2018).

ITG mode Zonal flow damping test
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Set up of simulations
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β = 1.28%, 
Tf /Ti = 25, 
Mi/Me = 100,
ρ∗ = 1/100
nf/n0=0.025

We consider a normal magnetic shear plasma which has energetic 
particle pressure gradient and bulk plasma pressure gradient.
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Linear stability

• The plasma is unstable against a TAE at low toroidal 
mode number n=2, which has real frequency in the gap 
of Alfven continuum indicated by yellow color. 

• Drift-wave instability (kinetic ballooning mode: KBM) is 
unstable at high toroidal mode number n >6.
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Outlook of nonlinear simulation results
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Only-DWT TAE+DWT

The presence of the TAE instability significantly changes 
the fluctuations of turbulence.

1. TAE+DWT
2. Only-DWT: without energetic particles
3. Only-TAE: limited to low n



Development of the mixture of TAE 
and DWT

• Drift-wave turbulence is established at first, then TAE appears to 
modify turbulent fluctuations.
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TAE influences turbulent transport

• The TAE suppresses the most unstable drift-wave mode but enhances a 
smaller toroidal wavenumber mode, causing the inverse cascade.

• Due to the inverse-cascaded fluctuations the energy flux of bulk ions Qi in 
TAE+DWT is enhanced at middle wavenumbers (4<n<10), and the peak of Qi in 
TAE+DWT is shifted from n=12 to n=10 compared to Only-DWT.

• The interaction slightly suppresses the particle flux of energetic ions Γf at n=2 
but enhances Γf by the inverse-cascaded fluctuations. 8



Process of the interaction between 
TAE and DWT

• The most unstable drift-wave mode (n=12) 
gets saturated by producing zonal flow 
(n=0) at t=13 for both TAE+DW and Only-
DWT. 

• Then, at t=20, TAE mode (n=2) grows in 
TAE+DWT, while n=2 mode decreases in 
Only-DWT. 

• Following the growth of TAE (n=2) in 
TAE+DWT the most unstable drift-wave 
mode (n=12) further decreases compared 
to Only-DWT after t=20. 

• This interaction between TAE and the 
drift-wave mode (n=12) enhances another 
drift-wave mode through nonlinear mode 
coupling after the growth of TAE. 

• Hence, the TAE suppresses the most 
unstable drift-wave mode but enhances 
smaller toroidal wavenumber modes.9
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Suppression mechanism of the 
most unstable drift-wave mode

• Before the growth of the TAE, the drift-wave turbulence is poloidally localized 
in the unfavorable curvature region.

• Then, after the development of the TAE, the turbulence spreads to the 
favorable curvature region because of the global structure of the TAE, 
suppressing the most unstable drift-wave mode through the geometrical 
damping effect. 10



Transfer of turbulence energy by 
the presence of macro-scale MHD
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• The drift-wave grows at the 
outside of the torus at the 
frame (a).

• Then becomes turbulence 
with the inverse cascade at 
the frame (b) 

• The nonlinear mode coupling 
of turbulence with the 
macro-scale MHD instability, 
by contrast, does not transfer 
the energy of turbulence to 
neither a large-scale and 
localized structure nor a 
small scale and homogenized 
structure but transfers the 
energy to the homogenized 
and large-scale structure at 
the frame (c).

(b)

(a)

(c)



Summary
• Global electromagnetic gyrokinetic simulations enable us 

to investigate multi-scale nonlinear interactions between 
electromagnetic turbulence and the toroidal Alfven 
eigenmode, which is a macro-scale MHD instability driven 
by energetic particles.

• As a result of the interactions, the TAE transfers the 
energy of turbulence from high n  modes to low n modes, 
causing the inverse cascade.

• The inverse-cascaded fluctuations enhance both the bulk 
ion energy transport and fast ion particle transport

• Before the growth of the TAE, the drift-wave turbulence is 
poloidally localized in the unfavorable curvature region. 
Then, after the development of the TAE, the turbulence 
spreads to the favorable curvature region, suppressing the 
most unstable drift-wave mode through the geometrical 
damping effect. 
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