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Overview
Novel type of ITB induced by ion-cyclotron-resonance-heating (ICRH) fast ions 
predicted-first theoretically and observed at ASDEX Upgrade (AUG)

• Theoretical model: wave-particle resonant interaction between fast ions and ITG.

• How to design an optimised discharge at ASDEX Upgrade?

• Experimental evidence: improved confinement!

• Radially global GENE turbulence simulations: transport barrier

• Transport barrier trigger mechanism

• Conclusions
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Turbulence stabilising mechanism by fast 
ions: wave-particle resonance effect

• Ion-scale frequency (positive defined for ion mode)  → fast ions drift frequency 
(due to inhomogeneity of ) 

ωk
B0 ωd, f

Resonant interaction (quasi-linear, 
electrostatic effect):
1.  energetic particles can resonate with the 

background instabilities if

2.  significant effect only if
ωk ≈ ωd, f

R
Ln, f

≪
R

LT, f

• Depending on the phase-space localisation of the resonance, this effect might be 
destabilising as well

Condition typically 
matched by ICRH 
fast ions

 is controlled 

by 

ωd, f
Tf
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•  leads to a linear ITG destabilisation →  (positive drive region)

• Optimal stabilisation for  at  →   (negative drive region)

Tf /Te < 7 ωk = ωd, f

3He Tf /Te ∼ 20 ωk = ωd, f

• Depending on the wave-number selected the “sweet-spot” in  for maximum 
stabilisation  changes.

Tf /Te
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dilution

ITG  vs He temperatureγ 3

Turbulence stabilising mechanism by fast 
ions: wave-particle resonance effect
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• Energetic particle temperature profile is designed to suppress almost totally the ITG 
micro-instabilities in a narrow layer

• Large energetic particle charge 
concentration are required

• Large temperature gradients in the 
region where  is optimal

• Both stabilising and de-stabilisation 
regions are essential for the transport 
barrier formation (shown later)

Tf /Te

Optimal conditions for wave-
particle resonant effects

How to design experimental profiles maximising this 
resonance effect with TORIC/SSFPQL and GENE?
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Microinstability characterisation

ρtor = 0.2

• : large ; small : no significant stabilising 
effect expected/observed.
ρtor = 0.2 Tf R /LTf

kyρs

γ[
c s

/a
]
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ρtor = 0.2 ρtor = 0.25

• : large ; small : no significant stabilising 
effect expected/observed.

• : optimal ; large ; substantial 
stabilising effect expected/observed.

ρtor = 0.2 Tf R /LTf

ρtor = 0.25 Tf R /LTf

Microinstability characterisation

kyρs kyρs
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ρtor = 0.2

• : large ; small : no significant stabilising 
effect expected/observed.

• : optimal ; large ; substantial 
stabilising effect expected/observed.

• : small ; large ; destabilising effect 
expected/observed.

ρtor = 0.2 Tf R /LTf

ρtor = 0.25 Tf R /LTf

ρtor = 0.3 Tf R /LTf

ρtor = 0.25 ρtor = 0.3

Microinstability characterisation
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Time traces AUG#36637
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• Very small degradation of energy confinement time observed by increasing 
external ICRF power; in H-mode plasmas expected 

• Significant steepening of main ion temperature profile in the region of larger 
fast ion logarithmic temperature profile

τe ∼ P−0.67
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Power balance computed by ASTRA

• Ion conductivity at  is reduced by  despite the increase of 
the auxiliary heating.

• Electron conductivity remains at similar levels.

Beneficial effect of ICRF observed at AUG

t = 4.1s ∼ 50 % ∼ 40 %
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Radial profiles of overall heat fluxes
• Internal “anomalous” transport barrier observed in radially global electromagnetic 

GENE simulations by looking at the overall (thermal + fast) ion heat flux
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Radial profile of vE×B0

• Localised  shearing layers in the  observed at the radial 
boundaries of the transport barrier

E × B0 vE×B0
= ∂xϕ1/ρtorB0
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Comparison with experimental power balance

• Excellent agreement between GENE and the volume integral of the injected sources 
computed by ASTRA.

• GENE correctly reproduce experimental fluxes only when supra-thermal particles 
are retained. 
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Neoclassical fluxes
• Neoclassical transport increases to the turbulent levels as the turbulent heat flux drops 

in the F-ATB region. 

• Dominant neoclassical contribution given by the supra-thermal particles.
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Electrostatic vs electromagnetic simulations

• Localised turbulence suppression, characteristic of the F-ATB, is largely observed 
also by neglecting the EM fluctuations  ES trigger mechanism. 

• Electromagnetic effects leads to a turbulence stabilisation in .

→

ρtor = [0.3 − 0.5]

• These findings cannot be explained by transport barrier trigger mechanisms 
known in literature. 
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F-ATB trigger mechanism: wave-particle resonant 
interaction between ITGs and fast ions (ICRH)

• Dominant ITG linear growth rate (n = 21) exhibits almost full suppression in : 
fast ion contribution to ITG mode dominated by stabilising velocity space regions.

• Local changes in fast ion temperature and density profiles  effect of supra-thermal particles on 
plasma turbulence turns from stabilising to destabilising in .

ρtor = [0.2 − 0.25]

→
ρtor = [0.25 − 0.3]
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Conclusions
• Theoretical prediction and observation of the formation of a new type of transport barrier in 

fusion plasmas, called F-ATB (fast ion-induced anomalous transport barrier)

• Existence of the F-ATB demonstrated via global gyrokinetic simulations with realistic ion-
to-electron mass ratio, collisions, and fast ions modelled with realistic background 
distributions.

• Trigger mechanism: electrostatic resonant interaction between supra-thermal particles and 
plasma micro-turbulence. 

• Experimental evidence at ASDEX Upgrade on a properly designed scenario to maximise 
fast ion effects on turbulence in a narrow radial region.

Next steps:

• Additional dedicated experiments on ASDEX Upgrade to explore further this ion 
confinement improvement with ICRH.

• Investigate the possible role of the F-ATB on SPARC.
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Backup slides
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Single species heat flux contributions
• A full turbulence suppression of the overall heat transport observed within the F-ATB 

(fast ion induced anomalous transport barrier).

• Turbulence reduction extends to  consistently with modifications in  due 
to the rump-up of the ICRF power.

ρtor ∼ 0.1 χi
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•  leads to a linear ITG destabilisation →  (positive drive region)

• Optimal stabilisation for  at  →   (negative drive region)

Tf /Te < 4 ωk = ωd, f

3He Tf /Te ∼ 12 ωk = ωd, f

• Depending on the wave-number selected the “sweet-spot” in  for maximum 
stabilisation  changes.

Tf /Te

Alessandro Di Siena

Turbulence stabilising mechanism by fast 
ions: wave-particle resonance effect

Tf /Te

ITG  vs He temperatureγ 3
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Power balance computed by ASTRA

• NBI + ICRH power mostly absorbed by electrons.

• Ion conductivity at  is reduced by  despite the increase of the 
auxiliary heating.

• Electron conductivity remains at similar levels.

Beneficial effect of ICRF observed at AUG

t = 4.1s ∼ 50 % ∼ 40 %
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Fast ion profiles AUG#36637
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•  →  is too small, despite the large 

•  →  reached only where  is small ( )

•  →  close to the peak of  (largest effect)

t = 2.0s Tf R/LT, f

t = 3.0s Tf ∼ 50keV R/LT, f ∼ 10

t = 4.1s Tf ∼ 50keV R/LT, f
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Velocity space structures
• Phase-space structure of fast ion heat flux exhibits only negative values at 

  localised where the resonance condition of the most relevant modes 
is matched.

• Wave-particle resonance enhances the turbulence drive at   largest heat 
flux contribution lies within the largest phase-space region.
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