2021.5.10(Mon) – 2021.5.15(Sat) 28th IAEA Fusion Energy Conference(FEC 2020) Virtual Event TH/4-5

Spontaneous ITB formation in gyrokinetic flux-driven ITG/TEM turbulence

<u>Contents</u>

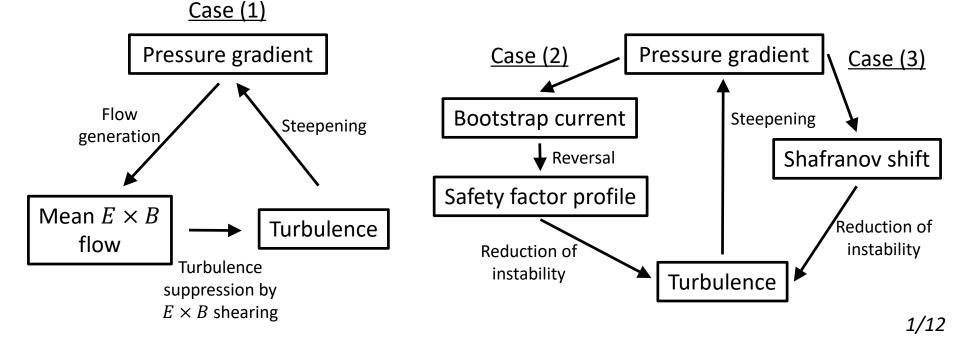
- 1. Introduction (3/12)
- 2. Full-f gyrokinetic code GKNET (2/12)
- 3. Spontaneous ITB formation in flux-driven ITG/TEM turbulence (6/12)
- 4. Summary & Future plans (1/12)

Kenji Imadera and Yasuaki Kishimoto

Graduate School of Energy Science, Kyoto University, Japan

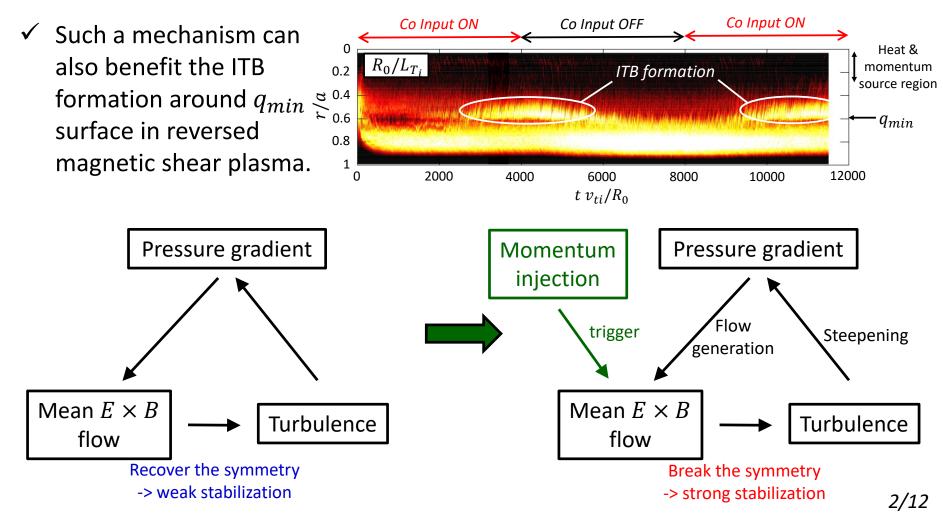
Background: Possible Mechanism of ITB Formation

- ✓ Internal Transport barrier (ITB) has a crucial key to achieve a high-performance plasma confinement.
- ✓ Some possible mechanism for ITB formation are proposed [Ida, PPCF-2018] as
 - (1) Positive feedback loop via $E \times B$ mean flow [Sakamoto, NF-2004] [Yu, NF-2016]
 - (2) Positive feedback loop via safety factor profile (BS current) [Eriksson, PRL-2002]
 - (3) Positive feedback loop via Shafranov shift + EM stabilization [Staebler, NF-2018]



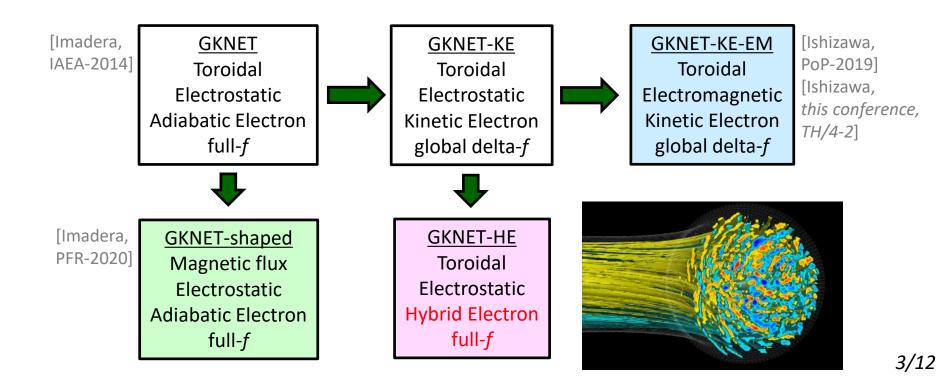
Background: ITB Formation by Momentum Injection

✓ By our full-*f* gyrokinetic code *GKNET*, we found that momentum injection can change mean $E \times B$ flow through the radial force balance, which can break the ballooning symmetry of turbulence, leading to ITB formation. [Imadera, IAEA-2016]



Motivation of This Research

- ✓ However, in our previous study based on the original GKNET with adiabatic electron, enough large co-momentum injection is required for ITB formation in flux-driven ITG turbulence. In addition, some experiments indicate the importance of counter-intrinsic rotation. [Sakamoto, NF-2001]
- ✓ In this study, we have introduced hybrid kinetic electron model [Lanti, JP-2018] and investigated spontaneous ITB formation in flux-driven ITG/TEM turbulence.



Full-f Gyrokinetic Code GKNET - 1

$$\begin{aligned}
\mathbf{GK \ Vlasov\ equation} \\
\frac{\partial}{\partial t}(\mathcal{J}f_{s}) + \mathcal{J}\frac{d\mathbf{R}}{dt} \cdot \frac{\partial f_{s}}{\partial \mathbf{R}} + \mathcal{J}\frac{dv_{\parallel}}{dt}\frac{\partial f_{s}}{\partial v_{\parallel}} = \mathcal{J}C_{s,s} + \mathcal{J}S_{src} + \mathcal{J}S_{snk} \\
\frac{d\mathbf{R}}{dt} = \frac{1}{B_{\parallel}^{*}} \left[v_{\parallel}(\mathbf{\nabla} \times \mathbf{A}) + \frac{B_{0}}{\Omega_{s}}v_{\parallel}^{2}(\mathbf{\nabla} \times \mathbf{b}) + \frac{c}{e_{s}}H \mathbf{\nabla} \times \mathbf{b} - \frac{c}{e_{s}}\mathbf{\nabla} \times (H\mathbf{b}) \right] \\
\frac{dv_{\parallel}}{dt} = -\frac{1}{m_{s}B_{\parallel}^{*}} \left[(\mathbf{\nabla} \times \mathbf{A}) \cdot \mathbf{\nabla}H + \frac{B_{0}}{\Omega_{s}}v_{\parallel}\mathbf{\nabla} \cdot (H\mathbf{\nabla} \times \mathbf{b}) \right]
\end{aligned}$$

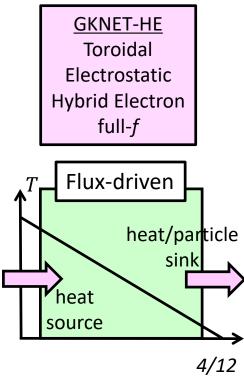
$$= \int \int \langle \delta f_i \rangle_{\alpha,i} \frac{B_{\parallel}^*}{m_i} dv_{\parallel} d\mu + \frac{1}{4\pi e_i} \nabla_{\perp} \cdot \frac{\rho_{ti}^2}{\lambda_{Di}^2} \nabla_{\perp} \phi = \delta n_e$$

 f_s : full-*f* distribution function for species s = i, e $C_{s,s}$: self-collision operator for species s S_{src} : Heat source operator S_{snk} : Krook-type sink operator

Physical model

- ✓ GKNET-HE is based on full-f gyrokinetic model, which trace turbulence and background profiles self-consistently.
- ✓ External heat source and sink are introduced so that the turbulence is not decayed but sustained over the confinement time (flux-driven simulation).
- ✓ To study flux-driven ITG/TEM turbulence, we have introduced the following hybrid kinetic electron model [Lanti, JP-2018].

	(m,n)=(0,0)	$(m,n) \neq (0,0)$
δn _{e,pass}	Kinetic response	Adiabatic response
$\delta n_{e,trap}$	Kinetic response	Kinetic response



Full-f Gyrokinetic Code GKNET - 2

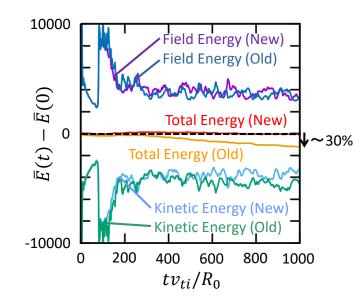
$$\begin{aligned} \mathbf{GK \ Vlasov \ equation} \\ \hline \\ \frac{\partial}{\partial t}(\mathcal{J}f_{s}) + \mathcal{J}\frac{d\mathbf{R}}{dt} \cdot \frac{\partial f_{s}}{\partial \mathbf{R}} + \mathcal{J}\frac{dv_{\parallel}}{dt}\frac{\partial f_{s}}{\partial v_{\parallel}} = \mathcal{J}C_{s,s} + \mathcal{J}S_{src} + \mathcal{J}S_{snk} \\ \frac{d\mathbf{R}}{dt} = \frac{1}{B_{\parallel}^{*}} \bigg[v_{\parallel}(\mathbf{\nabla} \times \mathbf{A}) + \frac{B_{0}}{\Omega_{s}}v_{\parallel}^{2}(\mathbf{\nabla} \times \mathbf{b}) + \frac{c}{e_{s}}H \mathbf{\nabla} \times \mathbf{b} - \frac{c}{e_{s}}\mathbf{\nabla} \times (H\mathbf{b}) \bigg] \\ \frac{dv_{\parallel}}{dt} = -\frac{1}{m_{s}B_{\parallel}^{*}} \bigg[(\mathbf{\nabla} \times \mathbf{A}) \cdot \mathbf{\nabla}H + \frac{B_{0}}{\Omega_{s}}v_{\parallel}\mathbf{\nabla} \cdot (H\mathbf{\nabla} \times \mathbf{b}) \bigg] \end{aligned}$$

GK quasi-neutrality condition
$$\iint \langle \delta f_i \rangle_{\alpha,i} \frac{B_{\parallel}^*}{m_i} dv_{\parallel} d\mu + \frac{1}{4\pi e_i} \nabla_{\perp} \cdot \frac{\rho_{ti}^2}{\lambda_{Di}^2} \nabla_{\perp} \phi = \delta n_e$$
$$f_s: \text{full-}f \text{ distribution function for species } s = i, e$$

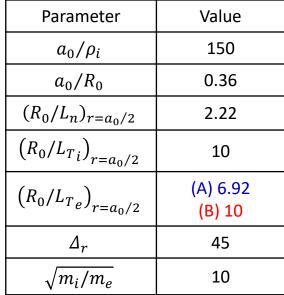
 f_s : full-*f* distribution function for species s = i, e $C_{s,s}$: self-collision operator for species *s* S_{src} : Heat source operator S_{snk} : Krook-type sink operator

Numerical model

- ✓ We discretize the Vlasov equation by using Morinishi scheme, which was developed for fluid simulation and introduced to rectangular gyrokinetic code, [Morinishi, JCP-2004, Idomura, JCP-2007] to polar coordinate with new flux-conservative scheme.
- ✓ Field equation is solved in real space (not k-space) and full-order FLR effect is taken into account by using 20 point average on gyro-ring.
- ✓ 3D MPI decomposition is introduced by utilizing 1D FFT and MPI_ALLtoALL transpose technique.

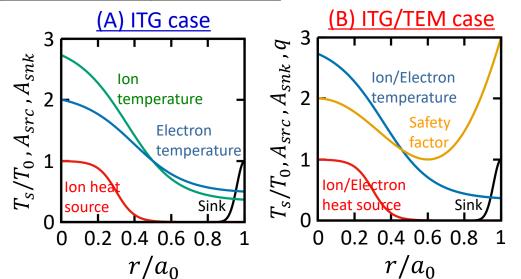


Simulation condition

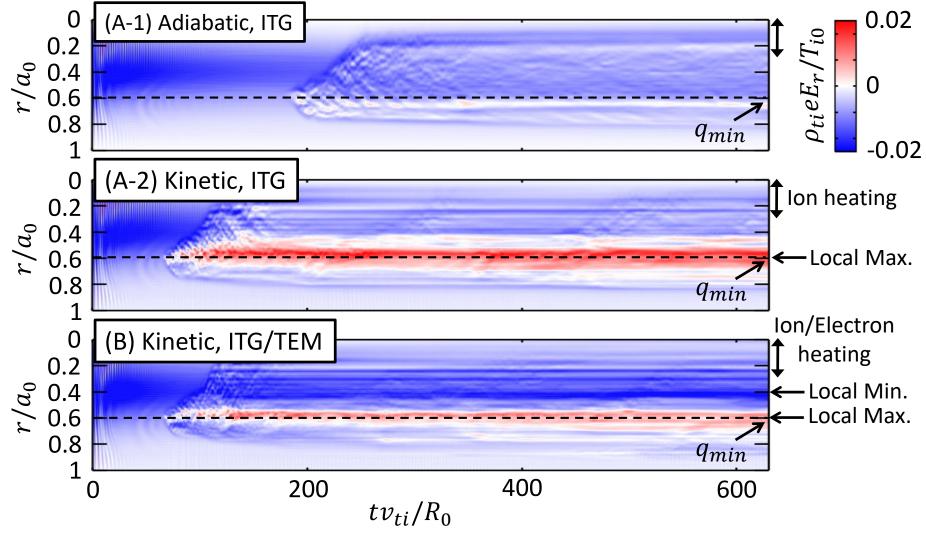


Parameter	Value
$ u_i^*$	0.1
$ u_e^* $	0.1
$ au_{src,i}^{-1}$	0.02 -> 4[MW]
$ au_{src,e}^{-1}$	(A) 0 -> 0[MW] (B) 0.02 -> 4[MW]
τ_{snk}^{-1}	0.1/0.36

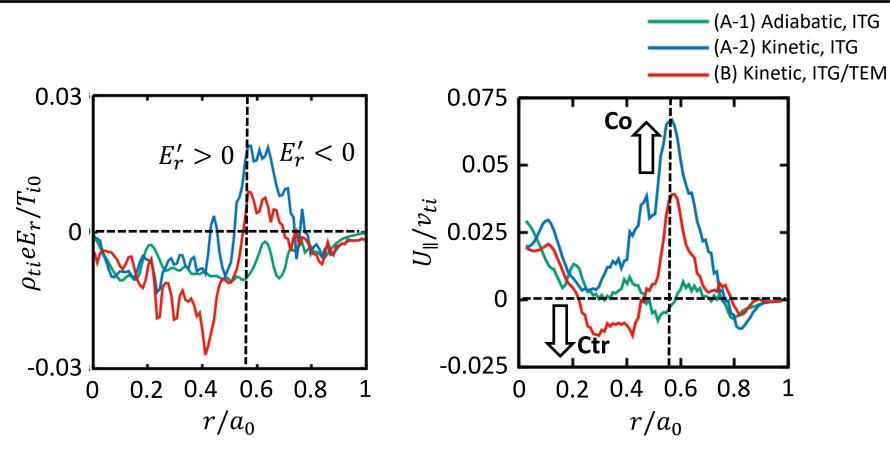
Parameter	Value
N_r	96
$N_{ heta}$	240
$N_{oldsymbol{arphi}}$	48
$N_{v_{\parallel}}$	96
N_{μ}	16
Δt	3.125 × 10 ⁻⁴



- ✓ We consider (A)ITG dominant and (B)ITG/TEM dominant cases.
- Safety factor profile is reversed, \checkmark which local minimum is located at $r = 0.6a_0$.
- \checkmark Only heat source is applied, which does not provide particle and momentum.



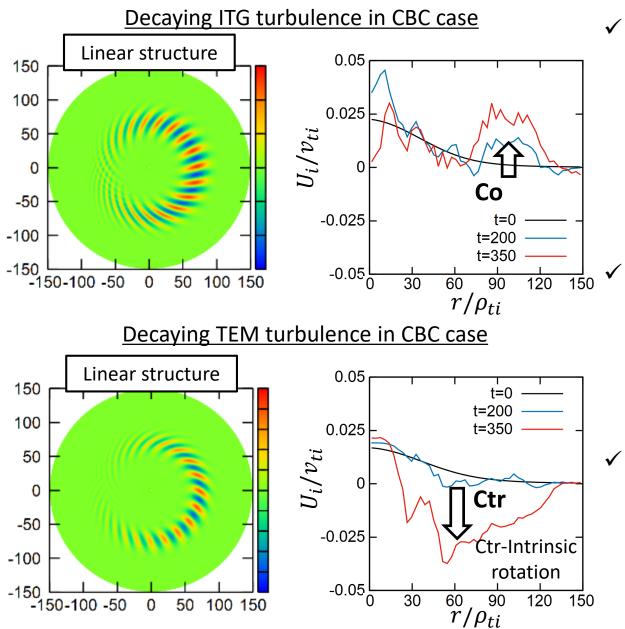
✓ Stable local maximum of mean E_r are formed near q_{min} surface only in kinetic electron cases.



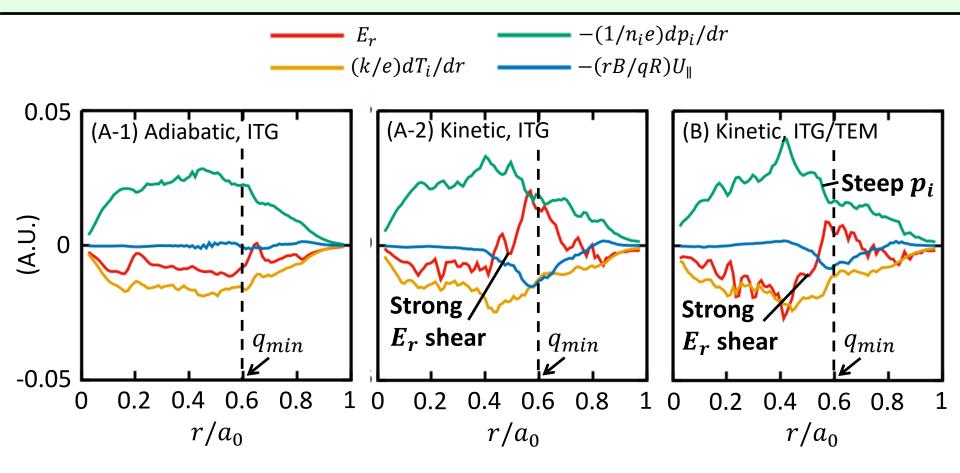
✓ Large co-rotation is driven around q_{min} surface in case (A-2) and (B).

- ✓ According to the momentum transport theory, $\langle \Pi_{RS} \rangle_{\theta\phi} = \alpha I E'_r + \beta I' + \gamma \langle k_{\theta} k_{\phi} \phi_k^2 \rangle_{\theta\phi}$ [Kwon, NF-2012], the first and second terms can reduce momentum diffusion in this case, which can keep the stable local maximum of mean E_r through the radial force balance.
- ✓ Counter-rotation is also observed in negative magnetic shear region in case (B). 8/12

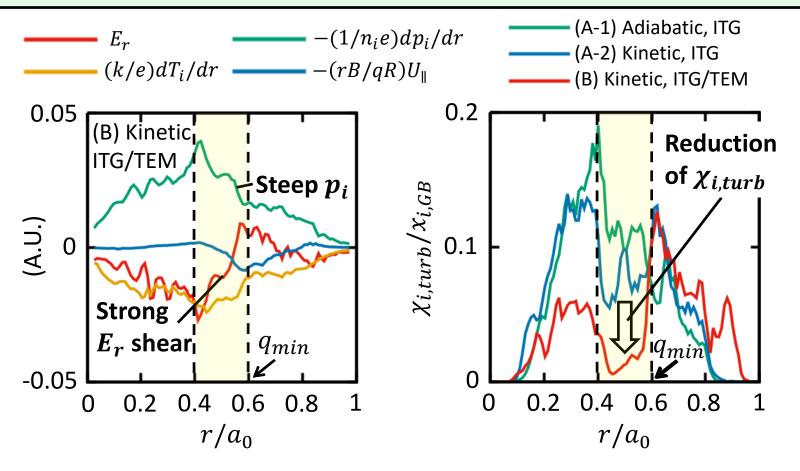
What is the Origin of Co-/Counter-Rotation?



- The finite ballooning angle of the global mode structure arising from the profile shearing effect
 [Kishimoto, PPCF-1998] induces the residual stress part of momentum flux [Camenen, NF-2011].
- The sign of the ballooning angle between ITG and TEM turbulence is opposite (left figures) so that the direction of intrinsic rotation is reversed.
- The steep electron temperature gradient is considered to destabilize TEM in the negative magnetic shear region.



- ✓ In flux-driven ITG turbulence with kinetic electrons, the co-current toroidal rotation can balance with E_r , of which shear becomes strong just inside of q_{min} surface.
- ✓ On the other hand, in ITG/TEM turbulence with kinetic electrons, E_r is reversed in negative magnetic shear region, which makes its shear stronger and pressure gradient steeper.



- ✓ As the result, ion turbulent thermal diffusivity in flux-driven ITG/TEM case spontaneously decreases to the neoclassical transport level among $0.4a_0 < r < 0.6a_0$, where E_r shear becomes steep.
- ✓ These results indicate that the co-existence of different modes can trigger the discontinuity near q_{min} , leading to the spontaneous ITB formation. 11/12

Summary & Future Plans

<u>Summary</u>

- ✓ We have performed the flux-driven ITG/TEM simulation in reversed magnetic shear configuration by using hybrid kinetic electron model.
- ✓ In the presence of both ion and electron heating, a counter-intrinsic rotation by TEM turbulence is driven in negative magnetic shear region, leading to steeper E_r shear and the resultant spontaneous larger reduction of ion turbulent thermal diffusivity.

Discussion

- ✓ An increase of counter intrinsic rotation in the narrow region of the ITB located just inside of q_{min} is also observed in JT-60U reversed magnetic shear discharge with balanced momentum injection [Sakamoto, NF-2001]. -> Qualitative agreement!
- ✓ It can conclude that counter intrinsic rotation is a possible candidate to trigger the positive feedback loop via $E \times B$ mean flow, leading to spontaneous ITB formation.

Future Plans

✓ By reflecting bootstrap current and shafranov shift effects to the analytical magnetic equilibrium [Imadera, PFR-2020] in time, we can take them into account, which can help us to understand the other positive feedback loop.