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Spontaneous ITB formation
in gyrokinetic flux-driven ITG/TEM turbulence



Background: Possible Mechanism of ITB Formation

 Internal Transport barrier (ITB) has a crucial key to achieve a high-performance 
plasma confinement.

 Some possible mechanism for ITB formation are proposed [Ida, PPCF-2018] as

(1) Positive feedback loop via 𝐸𝐸 × 𝐵𝐵 mean flow [Sakamoto, NF-2004] [Yu, NF-2016]

(2) Positive feedback loop via safety factor profile (BS current) [Eriksson, PRL-2002]

(3) Positive feedback loop via Shafranov shift + EM stabilization [Staebler, NF-2018]
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Background: ITB Formation by Momentum Injection

 By our full-f gyrokinetic code GKNET, we found that momentum injection can
change mean 𝐸𝐸 × 𝐵𝐵 flow through the radial force balance, which can break the
ballooning symmetry of turbulence, leading to ITB formation. [Imadera, IAEA-2016]

Recover the symmetry
-> weak stabilization

Break the symmetry
-> strong stabilization

 Such a mechanism can 
also benefit the ITB 
formation around 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
surface in reversed 
magnetic shear plasma.
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Motivation of This Research
 However, in our previous study based on the original GKNET with adiabatic

electron, enough large co-momentum injection is required for ITB formation in
flux-driven ITG turbulence. In addition, some experiments indicate the
importance of counter-intrinsic rotation. [Sakamoto, NF-2001]

 In this study, we have introduced hybrid kinetic electron model [Lanti, JP-2018] and
investigated spontaneous ITB formation in flux-driven ITG/TEM turbulence.
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 GKNET-HE is based on full-f gyrokinetic model, which trace
turbulence and background profiles self-consistently.

 External heat source and sink are introduced so that the
turbulence is not decayed but sustained over the confinement
time (flux-driven simulation).

 To study flux-driven ITG/TEM turbulence, we have introduced
the following hybrid kinetic electron model [Lanti, JP-2018].



Numerical model
 We discretize the Vlasov equation by using Morinishi

scheme, which was developed for fluid simulation
and introduced to rectangular gyrokinetic code,
[Morinishi, JCP-2004, Idomura, JCP-2007] to polar coordinate
with new flux-conservative scheme.

 Field equation is solved in real space (not k-space)
and full-order FLR effect is taken into account by
using 20 point average on gyro-ring.

 3D MPI decomposition is introduced by utilizing 1D
FFT and MPI_ALLtoALL transpose technique.
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Parameter Value

𝑁𝑁𝑠𝑠 96
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𝑁𝑁𝜑𝜑 48
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Δ𝜕𝜕 3.125×10-4

Simulation condition

 We consider (A)ITG dominant and
(B)ITG/TEM dominant cases.

 Safety factor profile is reversed,
which local minimum is located at
𝑟𝑟 = 0.6𝑎𝑎0.

 Only heat source is applied, which
does not provide particle and
momentum.
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ITB Formation in Flux-driven ITG/TEM Turbulence - 1
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[Kwon, NF-2012], the first and second terms can reduce momentum diffusion in this case,
which can keep the stable local maximum of mean 𝐸𝐸𝑠𝑠 through the radial force balance.

 Counter-rotation is also observed in negative magnetic shear region in case (B).
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What is the Origin of Co-/Counter-Rotation?
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Decaying ITG turbulence in CBC case

Decaying TEM turbulence in CBC case

Ctr-Intrinsic
rotation

 The finite ballooning angle 
of the global mode 
structure arising from the 
profile shearing effect 
[Kishimoto, PPCF-1998] induces 
the residual stress part of 
momentum flux [Camenen, 
NF-2011].

 The sign of the ballooning 
angle between ITG and TEM 
turbulence is opposite (left 
figures) so that the 
direction of intrinsic 
rotation is reversed. 

 The steep electron 
temperature gradient is 
considered to destabilize 
TEM in the negative 
magnetic shear region.
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 In flux-driven ITG turbulence with kinetic electrons, the co-current toroidal rotation can
balance with 𝐸𝐸𝑠𝑠, of which shear becomes strong just inside of 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 surface.

 On the other hand, in ITG/TEM turbulence with kinetic electrons, 𝐸𝐸𝑠𝑠 is reversed in
negative magnetic shear region, which makes its shear stronger and pressure gradient
steeper.

ITB Formation in Flux-driven ITG/TEM Turbulence - 4
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 As the result, ion turbulent thermal diffusivity in flux-driven ITG/TEM case
spontaneously decreases to the neoclassical transport level among 0.4𝑎𝑎0 < 𝑟𝑟 < 0.6𝑎𝑎0,
where 𝐸𝐸𝑠𝑠 shear becomes steep.

 These results indicate that the co-existence of different modes can trigger the
discontinuity near 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚, leading to the spontaneous ITB formation. 11/12
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Summary
 We have performed the flux-driven ITG/TEM simulation in reversed magnetic shear

configuration by using hybrid kinetic electron model.

 In the presence of both ion and electron heating, a counter-intrinsic rotation by TEM
turbulence is driven in negative magnetic shear region, leading to steeper 𝐸𝐸𝑠𝑠 shear and
the resultant spontaneous larger reduction of ion turbulent thermal diffusivity.

Discussion
 An increase of counter intrinsic rotation in the narrow region of the ITB located just

inside of 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 is also observed in JT-60U reversed magnetic shear discharge with
balanced momentum injection [Sakamoto, NF-2001]. -> Qualitative agreement!

 It can conclude that counter intrinsic rotation is a possible candidate to trigger the
positive feedback loop via 𝐸𝐸 × 𝐵𝐵 mean flow, leading to spontaneous ITB formation.

Future Plans
 By reflecting bootstrap current and shafranov shift effects to the analytical magnetic 

equilibrium [Imadera, PFR-2020] in time, we can take them into account, which can help us 
to understand the other positive feedback loop.
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