
Role of n_e^{sep} in the pedestal performance in JET-ILW and comparison with JET-C. L. Frassinetti et al. (KTH)

- Negative correlation between p_e^{ped} and n_e^{sep}/n_e^{ped} observed in JET
- The correlation is due to two distinct mechansims:
 - 1. $n_e^{sep}/n_e^{ped} < 0.4$
 - the increase of n_e^{sep}/n_e^{ped} shifts the pressure outwards
 - PB modes are destibilized and p_e^{ped} decreases.
 - o The effect saturates at $n_e^{sep}/n_e^{ped} \approx 0.4$
 - 2. $n_e^{sep}/n_e^{ped} > 0.4$
 - \circ the increase of n_e^{sep}/n_e^{ped} reduces $\nabla n_e/n_e$
 - increase of turbulent transport
 - The pedestal gradients are reduced
 - Resistive MHD might be neccesary to explain the ELMs
- Extrapolation to ITER are not trivial: ITER will operate on the peeling boundary

