

<u>Arne Kallenbach</u>, R. Dux, M. Bernert, M. Cavedon, P. David, M. Dunne, M. Griener, R.M. McDermott, V. Rohde, ASDEX Upgrade team¹, EUROfusion MST1 team²

Max-Planck-Institut f. Plasmaphysik, Garching, Germany

L. Gil

EX/2

Instituto de Plasmas e Fusao Nuclear, IST, Lisboa, Portugal

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

¹see author list of *H. Meyer et al.* 2019 Nucl. Fusion **59** 112014 ²see author list of *B. Labit et al.* 2019 Nucl. Fusion **59** 086020

DEMO must operate in a no-ELM scenario

elements have to match together different requirements will call for impurity mix

This talk will adress a few topics regarding integration of impurity seeding using as example the EDA H-mode

l D D

- Development of a typical AUG discharge with increasing Ar puff level
- Pedestal tailoring by argon seeding in the **EDA H-mode**
 - behaviour of the quasi-coherent mode (QCM) with seeding
- Integration with divertor radiation / detachment
- Conclusions and next steps

Standard H-mode response to rising Ar puff level

IPP

Standard H-mode response to rising Ar puff level

Arne Kallenbach

EDA H-mode in ASDEX Upgrade (high shaping)

EDA H-mode obtained at AUG at relatively low ECRH power

- upper power threshold to type-I ELMs

→ to be combined with impurity radiation at or inside pedestal

L. Gil et al., NF 2020 very similar to C-Mod EDA H-mode

Variation of P_{sep} by Ar seeding (EDA conditions)

complete ELM suppression at very low P_{sep}

Arne Kallenbach

μр

EDA H-mode extended to high power by controlled Ar seeding

Quasi-coherent mode directly seen by He-beam diagnostic

Helium-beam diagnostic visualises QCM

radial and poloidal l.o.s tangent to flux surfaces

QCM rotates in electron-diagmagnetic direction (upward in omp)

12.05.2021

Arne Kallenbach

11

Database of seeded EDA discharges ($I_p = 0.7 - 0.8$ MA)

EDA H-modes only at low P_{sep}

QCM frequency decreases with $\mathsf{P}_{\mathsf{heat}}\text{-}\mathsf{P}_{\mathsf{rad}}$

v decreases with f

take 3 km/s at 30 kHz assume $v_{hfs} < v_{lfs}$

 \rightarrow m ~ 100, n~ 20

Ar radiation reduces pedestal top pressure, retains stored energy

Arne Kallenbach

Scenario integration for partial divertor detachment

Double radiative feedback for high power, no-ELM, detachment

IPP

- Argon to maintain quasi-coherent mode and no-ELM state
- Nitrogen for divertor partial detachment

Combined Ar and N radiation in the pedestal

- effect of charge exchange ~ triples pedestal radiation
- $c_{Ar} \approx 0.3$ %, $c_N \approx 1$ % \rightarrow more pedestal radiation per dilution from Ar

MHD stability analysis

• EDA H-mode is stable close to ballooning limit

Partial detachment with combined Ar+N achieved

Langmuir probes along outer divertor target

٠

ЪD

Core fuel dilution must be restricted to minimum

$$\Delta Zeff= 1.5 \text{ by Ar} \rightarrow c_{Ar} \approx 0.5 \%$$

 $\rightarrow 9 \% \text{ dilution}$

(Î)

Integration of a no-ELM scenario and divertor detachment achieved on ASDEX Upgrade in EDA H-mode with Ar and N double feedback

Next:

- reduce safety factor q_{95} (X3 heating instead of X2 for tungsten control)
- extend to higher divertor neutral pressure to make Ar an efficient divertor radiator (→ QCE scenario ?)
- alternative divertor configuration ?
- direct control of the quasi-coherent mode ?
- modelling for extrapolation (divertor, transport, MHD and stability)