RF heated Tritium plasmas: dithers indicated that $P_{\text{L-H}}(T) > P_{\text{L-H}}(D)$ (preliminary)

- New result at time of conference: with NBI, $P_{\text{L-H}}(T) < P_{\text{L-H}}(D)$, as expected

- Helium plasmas, comparison with Hydrogen, Deuterium:
 - Shifts in $n_{\text{e,min}}$: $\bar{n}_{\text{e,min}}(D) = 0.4 f_{\text{GW}}$, $\bar{n}_{\text{e,min}}(H) = 0.5 f_{\text{GW}}$, $\bar{n}_{\text{e,min}}(\text{He}) = 0.6 f_{\text{GW}}$
 - Above $n_{\text{e,min}}$: $P_{\text{L-H}}(\text{He}) = P_{\text{L-H}}(D)$
 - L-H modelling D, He: collisional diffusion $\sim Z^2$, smaller transport reduction in He
 - Observed high frequency Type I ELMs in Helium

- Deuterium plasmas:
 - Doppler reflectometry: E_r shear doesn’t evolve along power ramp
 - Ion heat flux is not a linear function of density below $n_{\text{e,min}}$
 - Scaling laws for L-H power threshold in JET-ILW

- Outlook: further L-H transition studies in Tritium and DT planned in 2021

Emilia R. Solano and JET L-H transition team