





# MIRA: a Multiphysics Approach to Designing a **Fusion Power Plant**

F. Franza (KIT), L.V. Boccaccini (KIT), E. Fable (IPP), I. Landman (KIT), I.A. Maione (KIT), S. Petschanyi (KIT), R. Stieglitz (KIT), H. Zohm (IPP)

VIRTUAL 28th IAEA FUSION ENERGY CONFERENCE, 10-15 May, 2021

**28th IAEA Fusion Energy** Conference (FEC 2020)

### **Fusion Reactors' System Codes**



Major challenges of fusion energy

- Physics  $\rightarrow$  High confinement and stable plasma operational regime
- Technology  $\rightarrow$  Plasma heating, blanket, divertor, magnet coils
- Integrated Plant Design → System Codes

General definition based on existing fusion system codes

A tool where <u>all reactor components are simulated</u> by means of <u>simplified</u> <u>models</u>, **often zero dimensional**, aiming to <u>explore all possible</u> <u>configurations</u> and setting the <u>physics and engineering requirements and</u> <u>constraints</u> to be simultaneously met.

Presently available system codes (0D/1D)

■ PROCESS, SYCOMORE → Reference codes for EU-DEMO analysis

ARIES (USA), KSC (Korea), TPC (Japan)



# **Conceptual Design of the EU-DEMO Reactor**





MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

<sup>&</sup>quot; IAEA Fusion Energy Conference,



MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

IALA I usion Energy conterence,

#### **Reactor Architecture**

5/16





MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

# **Free-Boundary Magnetic Equilibrium**



Coil filament

PF

CS3U

CS2U

CS1

CS2L

CS3L

r<sub>p</sub>

PF6

Find PF/CS coils currents s.t.

Ф

PF2

Zp

PF5

PF3

PF4 Plasma filament

 $\partial \mathcal{D}_p^t$ 



#### **Solve Grad-Shafranov Equation**



MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

<sup>10-15</sup> May, 2021

## **Core/SOL Plasma Physics**

#### Steady state core power balance

 $P_{fus} + P_{add} = P_{neut} + P_{rad} + P_{sep}$ 





#### Plasma profiles' parametrization

- $n_{e}$ : Electron density
- T: Temperature



 $\rangle\rangle$ 

**Conclusion & Outlook** 

7/16 09.04.2021 F. Franza

MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

Virtual 28<sup>th</sup> IAEA Fusion Energy Conference,

# Karlsruhe Institute of Technology

### **Reactor neutronics**



MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

Virtual 28th IAEA Fusion Energy Conference,



MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

<sup>10-15</sup> May, 2021





10/16 09.04.2021 F. Franza

Virtual 28<sup>th</sup> IAEA Fusion Energy Conference,

MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

## Summary of MIRA analysis - EU-DEMO 2015



| Parameter [unit]                             | MIRA      | PROCESS | Туре                             |
|----------------------------------------------|-----------|---------|----------------------------------|
| Plasma major radius [m]                      | 9.07      | 9.07    | I                                |
| Plasma aspect ratio [-]                      | 3.1       | 3.1     | I                                |
| Toroidal field at plasma center [T]          | 5.49      | 5.67    | 0                                |
| Plasma current [MA]                          | 19.26     | 19.60   | 0                                |
| Fusion power [MW]                            | 2037      | 2037    | $DT \approx 2000$                |
| Radiation power [MW]                         | 304.2     | 305.5   | 0                                |
| Additional heating power [MW]                | 50        | 50      | $DT\approx 50$                   |
| Transport loss across the separatrix [MW]    | 154.1     | 154.2   | 0                                |
| Tritium Breeding Ratio (TBR) (HCPB/WCLL) [-] | 1.20/1.14 | n.a.    | $\text{DT} \ge 1.05$             |
| Total thermal power (HCPB/WCLL) [MW]         | 2624/2371 | 2436    | 0                                |
| Net electric power (HCPB/WCLL) [MW]          | 365/350   | 500     | $\text{DT}\sim \textbf{300-500}$ |
| Plasma Burn time [hr]                        | 1.81      | 2.00    | $DT \ge 2 hr$                    |



## **Breakdown & Flat-top Magnetic Configurations**





MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

DE IAEA FUSION ENergy Conterence,

### **Improvements of EU-DEMO 2015 Baseline**



MIRA analysis of DEMO 2015 baseline issued by PROCESS

- **τ**<sub>burn</sub> = **1.81 hr** → violation of long pulse requirement (τ<sub>burn</sub> ≥ 2 hr)
- TBR = 1.20 (HCPB), 1.14 (WCLL)  $\rightarrow$  exploitable margin (TBR  $\geq$  1.05)

#### Mitigating strategy: reduction of inboard blanket thickness

- **CS** closer to plasma  $\rightarrow$  increase of  $\tau_{burn}$
- Reduction of material inventories  $\rightarrow$  cost benefits



## Parametric Scan of Inboard BZ Thickness



- Reduction of inboard BZ thickness  $\Delta_{BZ,ib}$
- EU-DEMO 2015 reference blanket designs

• HCPB 
$$\Delta_{BZ,ib}^{BL} = 23 \text{ cm}, \text{ TBR} = 1.20$$

• WCLL 
$$\Delta_{BZ,ib}^{BL} = 47 \text{ cm}, \text{ TBR} = 1.14$$

Relative thickness  $\delta_{BZ,ib} = \Delta_{BZ,ib}^{BL} - \Delta_{BZ,ib}$ 

• 
$$\delta_{BZ,ib} = [0, 20] \text{ cm}$$

Top thickness  $\rightarrow$  (inboard + outboard) / 2

#### Major magnet coils implications

Inward shift of CS

 $\sum$ 

- Inward shift of inboard TF coil leg
- Breeding, shielding and flux linkage effects

>

**Design improvements** 



Virtual 28<sup>th</sup> IAEA Fusion Energy Conference,

**Conclusion & Outlook** 

14/16 09.04.2021 F. Franza

MIRA: a Multiphysics Approach to Designing a Fusion Power Plant



#### **Parametric Scan of Inboard BZ Thickness**





### **Conclusion & Outlook**



#### Achievements

- High-fidelity fusion system/design code MIRA
- Enhanced physics & engineering modelling  $\rightarrow$  from 0D/1D to 2D/3D
- Refined mathematical representation of key reactor parameters
- Improved EU-DEMO 2015 reactor design

|                            | Req./ Const. | DEMO 2015<br>PROCESS | DEMO 2015<br>MIRA | Improved<br>DEMO 2015<br>MIRA |
|----------------------------|--------------|----------------------|-------------------|-------------------------------|
| Plasma burn time [hr]      | ≥ 2          | 2.00                 | 1.81              | 2.04                          |
| Tritium Breeding Ratio [-] | ≥ 1.05       | None                 | 1.16              | 1.11                          |

#### Outlook

- EUROfusion, TSVV Task 14: Multi-Fidelity Systems Code for DEMO Development of BLUEMIRA → BLUEPRINT (CCFE) + MIRA (KIT)
- Further system modelling and global optimization methods

