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• Introduction
• Numerical Approach
• RMP-induced transport in DIII-D and KSTAR

• Density pump-out
• Electron heat confinement

• Conclusions and Discussion



Introduction 3

• ITER plans to use 3D fields, Resonant Magnetic Perturbations 
(RMP), for ELM suppression

Pump-out (>25%) (over ～100 ms) Steeper and higher Te pedestal

Why is electron heat still 
confined?

What are the physics behind the 
density pump-out?

I-coil current

T. Evans et al., Nature 
2006

KSTAR, J. Lee et al., Nuclear Fusion 2019

Apparent correlation between
• I-coil current
• Turbulence intensity and
• ELM intensity
What are the physics behind 
RMP ELM-suppression?
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From DIII-D #157308 H-Mode Plasma Profiles M3D-C1 Yields 
3D Field with Good KAM Surfaces at Pedestal Slope and Top 4

Plasma profiles
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Good KAM surfaces in 
pedestal slope and top

Thin stochastic layer very close 
to the separatrix ψN≳0.98

Radial component of n=3 RMP 
field from M3D-C1

Thermal ion 
banana orbit 
width is 
comparable to 
pedestal width 
and spans 
multiple resonant 
surfaces

Δb

δB strong enough 
to affect trapped 
particle dynamics

Simulation setup: R. Hager et al., Nuclear Fusion 2019; M3D-C1 RMP: e.g. N. Ferraro et al., Phys. Plasmas 2012



The Gyrokinetic Code XGC is used to Study
the RMP Induced Transport 5

• XGC is a global 5D gyrokinetic, 
total-f particle-in-cell code

• Advantages of using the total-f 
gyrokinetic code XGC
• Whole volume simulation including 

SOL, separatrix, and magnetic axis
• 3D electric field and plasma profile 

solutions consistently with 
gyrokinetic physics and magnetic 
equilibrium

• No assumptions on fluid closures
• Nonlinear Fokker-Planck-

Landau collision operator
• Neutral particle recycling

Parallel current density from trapped and 
passing particles in NSTX #132543 

computed with XGC (R. Hager and C. S. 
Chang, PoP 2016, illustration by F. Sauer, 

T. Neuroth and K.-L. Ma, UC Davis)



XGC and M3D-C1 Are Coupled for Transport Study
in MHD-Screened RMP Field 6

• M3D-C1 provides perturbed 3D magnetic equilibrium
• XGC computes plasma transport
• Planned extensions

• Updated plasma profiles, effective transport coefficients, kinetic response 
currents, etc. can be returned to M3D-C1 for longer time-scale coupled 
simulation (to be done soon)

• Self-consistent RMP penetration in XGC
• Use electromagnetic version of XGC (mixed-variable formulation)

M3D-C1:
• 3D equilibrium magnetic 

field using fluid plasma 
response à screened 
RMP field

XGC:
• Gyrokinetic plasma 

transport in 3D magnetic 
equilibrium à radial 
fluxes, 3D potential 
solution

(planned)



Non-axisymmetric potential

0.94 0.96 0.98 1.00 1.02 1.04
s

N

0.00

0.05

0.10

0.15

0.20

Ti
m

e 
(m

s)

Non-axisymmetric potential

      
 

 

 

 

 
      

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

<b
q2 >1/

2 /T
e

 

 

 

 

 

 

 

 

 

 

RMP Field Increases Turbulence Intensity <δ!2>1/2/Te 7

Without RMPs With RMPs

Immediate (electron 
transit timescale) n=3 
response to RMP field 

before turbulence sets in
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RMPs Increase Density Fluctuations and
Decrease Temperature Fluctuations in the Pedestal 8

• n=3 mode (RMP) is removed to 
study changes in relative RMS 
turbulence fluctuation levels

• Potential fluctuations change only by 
~10%.

• Density fluctuations increase with 
RMP (by up to 40% at ψN≈0.97).

• Electron temperature fluctuations 
decrease with RMPs (by ∼25% at 
ψN≈0.97).

• These changes are correlated with 
changes in the transport fluxes.

• δpe is minimized by restricting δTe.
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Spectra suggest enhanced TEM in pedestal slope.
ITG deeper inside does not change as much (at t~0.2 ms) 9

ω/k < 0 corresponds 
to ion diamagnetic 

direction

Electron modeIon mode Transition between ion 
and electron mode

ExB flow
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Turbulence Intensity is Greater with RMP 
But what about Transport? 11

There are three main transport channels:

• Neoclassical flux

• 3D δB flux

• Turbulent ExB flux

Γneo = ΓD+Γ3D



Electron Thermal Transport Barrier in the Steep Pedestal 
Region Survives with RMP Field from M3D-C1 12

Turbulent+neoclassical particle diffusivity 
with RMP is higher than without RMPs

à ΔD=(Dneo+Dturb)(RMP) - (Dneo+Dturb)(no RMP)

determines density pump-out

à Electron thermal transport barrier in the steep 
pedestal region survives
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Turbulent electron thermal 
diffusivity is suppressed between 

0.96≲ψN≲0.98, neoclassical thermal 
diffusivity is slightly elevated

KAM –
stochastic 
boundary



RMP-Driven Particle Diffusivity (Turbulence+Neoclassical) is 
Sufficient for Density Pump-Out 13

• RMP-driven increase of neoclassical+turbulent particle diffusivity 
is largely sufficient for density pump-out in the steep pedestal region

Effective particle 
diffusivity must be 
greater than this 
rough estimate for 
25% pump-out in 
~100 ms.

Collisional transport w/o 
turbulence from XGC1

[R. Hager et al.,
Nuclear Fusion 5, 

126009 (2019)]

Difference between 
neoclassical+turbulence

particle diffusivity with and 
without RMP field
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à Increase of turbulent transport boosts pump-
out from enhanced neoclassical transport



Use Cross-spectral Analysis to Pinpoint
the Origin of the RMP-driven Particle Flux 14

• Find the origin of the increased turbulent particle flux density in:
• Higher turbulence amplitude or
• Shifted cross-phase between turbulent fluctuations
• Which mode numbers are responsible?

Cross-spectrum: #!" = %& '#, ), * +,∗ '#, ), * %&'
Cross-power: -!" = #!"
Cross-phase: ./!" = arctan ℑ(#!")/ℜ(#!")

Turbulent transport fluxes in terms of cross-power and 
cross-phase:
Γ% '#, ) = ; '# -() cos ./()

>% '#, ) = ; '#
3

2
A" [ C -(* cos ./(* + E -() cos(./)*)]

G% '#, ) = >% −
5

2
A" E Γ%

(α is a geometric factor from the flux-surface average.)
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Increased Particle Flux Density from m≳200 at ψN∼0.97 15

Particle flux

Electron heat 
flux

RMPs increase particle 
flux and decrease 
electron heat flux 
density around 
ψN∼0.97 at higher 
poloidal mode numbers 
m≳200 (kθρi ≳0.2-0.3).

à Electron energy 
transport is convective, 
riding the particle flux, 
which does not alter the 
Te gradient much.



Study Correlation between IRMP and Turbulence Intensity 
in KSTAR H-mode discharge 18451 16
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Y. In et al 2019 Nucl. Fusion 59 056009

• KSTAR #18451
• t=2.79 s, IRMP=0 kA/t à Before 

RMP application
• t=3.39 s, IRMP=2 kA/t à ELM 

mitigation
• t=4.69 s, IRMP=2.69 kA/t à ELM 

suppression

Equilibrium data à
t=2.79 s: kinetic EFIT
t=4.69 s: M3D-C1 based on 
kinetic EFIT



RMP Calculation with M3D-C1 is Very Sensitive to the 
Toroidal Rotation 17

Strong m=3 tearing response with experimental rotation profile
à no KAM surfaces left at '# ≳ 0.65
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XGC Simulation: Unstable Trapped-electron Modes 
(TEMs) extends to pedestal top, covering $. & ≤ (! ≤ ) 18

• Available simulation too short to study saturated edge turbulence

• Study exponential growth phase instead (”quasi-linear”)

• Initially unstable mode propagate in electron diamagnetic direction in ExB frame à TEM

• Growth rates in the steep-gradient region are largely similar between pre-RMP and RMP

ELM-suppressed phase, but extend to pedestal top with RMPs.
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Fast Neoclassical Profile Evolution is Observed around 
Magnetic Islands and in Stochastic Layer 19

• Neoclassical particle transport 
(including parallel transport
along the perturbed field) is 
inward around the m=2 and 
m=3 islands
à counter-intuitive (similar to
J. Kwon et al., Physics of 
Plasmas 2018)

• Electron temperature flattens 
across magnetic islands
à as expected

• This fast evolution is due to 
turbulence (confirmed with 
neoclassical simulations)

to change this, go to Insert > Header and Footer...
2.10 2.14 2.18 2.22

R (m)

-0.2

-0.1

0.0

0.1

0.2

Z 
(m

)

2.10 2.14 2.18 2.22
R (m)

-4×1018

-2×1018

0

2×1018

�n
e

(m
-3
)

0.5 0.6 0.7 0.8 0.9 1.0
�

N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

 (1
02

0  
m

-3
)

Initial
Neoclassical, t=165.5 µs
Turbulence, t= 61.9 µs

0.5 0.6 0.7 0.8 0.9 1.0
�

N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
m

pe
ra

tu
re

 (k
eV

)

Initial
Neoclassical, t=165.5 µs
Turbulence, t= 61.9 µs

(c)

(d)

t=2.79 s + 50 �s�
RMP off

t=4.69 s + 50 �s�
RMP on

(a) (b)

phase velocity phase velocity

q=2

q=3

q=4

q=5



Conclusions 20

• Electrostatic XGC (neoclassical+turbulence) with M3D-C1 n=3 RMP 
field simulations of DIII-D exhibit
• Higher particle flux in the pedestal with significant neoclassical 

contribution around the separatrix à enough to explain density 
pump-out

• Suppressed electron heat flux in the pedestal center à maintains steep 
Te gradient

• XGC simulations of KSTAR n=1 RMP discharge exhibit
• Unstable TEMs extend from the steep-gradient region to the pedestal top 

(0.9 ≤ '# ≤ 1) during ELM-suppression.
• Waiting for longer simulation to study saturated edge turbulence

• Working on self-consistent RMP penetration in XGC à mitigate 
uncertainty due to toroidal rotation

• Electromagnetic XGC will be used to study effect on ELM-turbulence 
interaction



XGC Whole-Volume Gyrokinetic Simulation of
RMP Driven Transport in Tokamaks 21

Visualization by E. Feibush, PPPL
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