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Abstract

Shattered pellet injection (SPI) systems that form cryogenic pellets in a pipe-gun for injection of material to mitigate
disruptions have been fabricated and installed for use in thermal mitigation and runaway electron dissipation experiments on
JET and KSTAR. These systems are to support disruption mitigation research for ITER and are based on an ORNL 3-barrel
design for flexibility in pellet size selection and variable pellet composition studies. The SPI systems for JET and KSTAR
have a common feature of the barrels being collimated into a single injection line that enters the vacuum vessel. The pellets
are shattered in bent stainless steel tubes that are mounted inside the vacuum vessel of the tokamak, vertically on JET and
horizontally on KSTAR. The JET installation has the unique feature of vertical SPI mounting and injection with the shatter
plume aimed toward the inner wall to intercept known runaway electron (RE) beam locations generated from argon gas
injection induced disruptions. The KSTAR SPI installation has two identical SPIs that are mounted on the midplane 180
degrees apart with identical injection lines and shatter tubes aimed at the plasma magnetic axis. Installation and operation of
these SPI systems has provided useful lessons learned in the implementation of this SPI technology and valuable experience
in optimizing the formation and firing of the pellets to optimize the physics performance.

1. INTRODUCTION

The disruption mitigation system for ITER is being designed based on the shattered pellet injection technology
[1] and experiments are being carried out on many tokamaks to understand the mitigation physics and to
optimize the technology. To support ITER in this effort, SPI systems have now been deployed on JET and
KSTAR for thermal and current quench mitigation studies and for suppression and dissipation research on
runaway electrons. These systems have a common feature of 3 different size pellets that are formed in-situ and
with the barrels collimated into a single injection line that enters the vacuum vessel [2]. The pellets are fired by
high pressure gas or a gas operated mechanical punch and are shattered in stainless steel tubes with a final 20-
degree bend that are mounted inside the vacuum vessel of the tokamak, vertically on JET and horizontally on
KSTAR. The three barrels can be fired independently and simultaneously if desired. Since they share a
common coldzone they must all be fired at the same temperature.

The fragmentation shatter tubes for the SPIs have been characterized in the laboratory before deployment [3]
and verified to achieve the directivity and spread desired for the specific device. The pellet mass and speed
leaving the barrels are measured with a microwave cavity diagnostic before shattering, and this data coupled
with fast camera views of the SPI fragments entering the plasma and plasma diagnostic data on radiation and
density enable detailed studies of the disruption mitigation effectiveness [4,5].  In this paper we describe the
unique features of the designs for both systems and how they were installed and operational experience.
Performance of the systems are described, and the shattered fragmentation of the pellets observed in the plasma
are compared with the laboratory fragmentation studies.

2. DESIGN OF SHATTERED PELLET INJECTORS

Both SPI systems on JET and KSTAR are 3-barrel SPIs based on the design that was previously installed on
DIII-D [2] that was based on a multi-barrel design originally conceived for ITER to have multiple injectors
occupy as little space as possible in the port cells. These designs use angled barrel geometry such that they
point to a common injection line and use a collector funnel to force the pellet into a trajectory to enter a single
shared injection line. The funnel has a 2-degree conical half angle, and the barrels enter the funnel at 2 degrees
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giving a 2-degree impact angle on the collector funnel exit for pellets that exit the barrel with no dispersion.
This design was chosen to keep the pellets from having a normal impact velocity in excess of 20 m/s [2].

The JET SPI design had a size constraint to fit in between a diagnostic shield block and the limb structure on top
of the machine. The design also had to comply with an all-metal seal configuration to meet the requirements for
a possible trace tritium exposure that could be possible in the JET DT environment. This required the use of
metal seals on the guard vacuum chamber instead of o-ring seals and the barrel seals at the exit of the guard
vacuum had to be changed to a conflat connection that required the use of bellows to make the system possible
to assemble and disassemble. This led to the utilization of a DN160 conflat cross for the guard vacuum
chamber, which made it difficult to fit the internals in the chamber and have room to install instrumentation and
multi-layer insulation. The cryostat for the barrels in this design shown in Fig. 1 is cooled with cold helium gas.
The two largest JET SPI barrels can optionally be operated with a gas operated mechanical punch [1] for release
of pure neon and argon pellets.

The KSTAR SPI design is very similar to the 3-barrel DIII-D SPI2 [2] and JET SPIs except that it uses a
Gifford-McMahon (GM) cryocooler to cool the cryostat instead of LHe used at DIII-D or cold helium gas as at
JET. It uses a DN200 conflat cross as the guard vacuum chamber which gives more room for the internals as
shown in Fig.1. The cryocooler used is a Sumitomo RDK-415D that provides approximately 10 W of cooling at
8 K, the nominal operating temperature for forming pellets. The KSTAR SPI uses o-ring seals on the barrels and
cryocooler connection.  The cryostat is bolted to the cryocooler cold head mounted on the top of the chamber
and does not use a thermal shield around the cryostat as the radiation heat load is estimated to be less than 2 W
and compared to the conduction heat load from the breech and barrel is not that significant. The minimum
temperature achieved with the cryocooler in this configuration is about 8 K.

JET SPI KSTAR SPI

FIG. 1. JET SPI internal configuration on the left and KSTAR SPI on the right. Key difference are the helium
cooling for the JET design and a cryocooler connection on top for the KSTAR design.

The barrel sizes and coldzone barrel interface define the size of pellets that are formed. Table 1 shows the initial
sizes used on both SPI systems for experiments and how much material of deuterium or neon a full-size pellet
contains. Mixtures of these gases are possible, and argon has also been used in the JET SPI for runaway
electron dissipation studies.

TABLE 1 PELLET CYLINDRICAL SIZES AND QUANTITIES OF D2 AND NEON FULL SIZE PELLETS IN
NUMBER OF ATOMS AND BAR-L GAS EQUIVALENT.

Device Diameter (mm) Len/Diam Natoms (bar-L) D2 Natoms (bar-L) Ne
JET 45 1.4 6.3E+21 (0.10) 45E+21 (0.14)
8.1 1.6 4E+22 (0.71) 2.9E+22 (1.01)
125 1.5 1.4E+23 (2.15) 1E+23 (3.78)
KSTAR 45 1.5 6.5E+21 (0.11) 4.6E+21 (0.16)
7 15 2.4E+22 (0.44) 1.7E+22 (0.63)
8.5 15 4.4E+22 (0.81) 3.1E+22 (1.15)
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For all the ORNL SPI systems put in service thus far, temperature control is achieved by using Lakeshore
temperature sensors, Cernox (JET) or silicon diodes (KSTAR and DIII-D), and resistive heaters mounted on the
cryostat and on the barrels. The measured temperature is monitored by a programmable logic controller that uses
a proportional integral derivative (PID) algorithm to control the power to the heaters for maintaining a constant
temperature. During pellet formation the temperature is allowed to go as low as possible with the cooling used.
When preparing the pellet to fire, the temperature is typically raised to 12.5 K where reliable pellet release from
the high-pressure gas is achieved with a 2 ms long propellant valve opening. Operating propellant gas pressures
are in to 50-60 bar range. The pressure does not have a strong impact on the pellet velocity as the minimum
pressure needed to break the pellet away at 12.5 K is already high enough to achieve nearly the highest possible
speeds. No attempt was made to achieve lower pellet speeds with gas only that are possible with careful tuning
of the propellant valve parameters as was done on the DIII-D SPI2 to minimize gas from entering the plasma.

A microwave cavity diagnostic [6] as shown in Fig. 2 is built into the injection lines on both the JET and
KSTAR SPI systems. It is also used as an injection line gap for
trapping propellant gas on both systems. It has a 10 cm gap
with a slight funnel on the downstream side to capture pellets
that may have up to 2° of dispersion when existing the
upstream guide tube. Perforated screens are welded into the
cavity conflat cross to screen in the microwaves in the resonant
part of the cavity while allowing gas to flow into the
downstream pumping chambers. A dedicated shielded
electronics box is used to hold the microwave source, detector,
and amplifier to condition the signal for recording by a

FIG. 2. The microwave cavity digitizer. The signal from this diagnostic provides a relative
implemented for both JET and KSTAR mass measurement and indication whether the pellet is intact
SPI1 system with perforated screens to when leaving the injector. This is used to determine the pellet
enable efficient pumping  while speed by computing the time of flight it takes for to the pellet
screening out the microwaves. to enter the plasma after passing through the cavity.

3. INSTALLATION AND OPERATION

The JET SPI is mounted vertically from the top of the machine and fits between a diagnostic shield block and
iron limb as shown in Fig. 3. The cryogenic system, vacuum ballast tank, gas manifold and electrical junction
box are mounted on top of the limb [7]. The cold helium gas cooling for the SPI is provided by forcing gas
through a liquid helium filled dewar to cool the gas to ~5 K. The helium exhaust is returned to the JET cryoplant
for reuse in making liquid helium.

The JET SPI has a reentrant shatter tube design that
fits inside a 40 mm guiding tube in the port that is
1.6 meters long. Consequently the shatter tube had to
be designed to provide the final shattering bend in a
very constrained geometry. The resulting design is
shown Fig. 4 that has a modest ‘S’ bend before the
final ~20-degree bend at the exit of the tube. The
tube exit is also flattened in order to fit within the 40
shatterd mm reentrant port guide. A 2-degree taper funnel
pellet that is 15 cm long is at the entrance of the shatter
tube to capture pellets with up to 2° dispersion after
jumping the torus interface valve (TIV) gap and
guides them into the 21 mm inner diameter of the
shatter tube. This final bend is directed toward the
inner wall as shown in Fig. 3. Tests of this design
were made in the ORNL pellet lab [3] and found to

FIG. 3. JET SPI installation on Octant 1 showing vertical prO(Iiuce a sl;]atte_redhspray_ Wlt:h"g:les-dzg:eefhzlf
installation with pumping and cryogenic system angle cone that Is shown in the model of the

infrastructure on top of JET. installation in Fig. 3.

Both of these SPI systems have multiple gaps in the injection line between the SPI and torus in order to pump
away the propellant gas before it can reach the plasma in front of the pellet. Since the gas sound speed exceeds
that of the pellets it is possible for the gas to reach the plasma before the pellet. This was observed to occur on
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the DIII-D SPI2 system [8] from fast camera video of the shattered material entering the plasma. The thermal
collapse of the plasma was found to begin when this gas reached the plasma and resulted in less effective
radiation levels and density assimilation from the subsequent pellet fragments entering the plasma after a partial
plasma thermal collapse had already occurred.

The JET SPI injection line and pumping system has three gaps for removing the I
propellant gas. The first stage gap just at the barrel exit is 6 cm with another
larger second stage 9.5 cm gap just downstream through the microwave cavity.
Then finally there is 10.5 cm third stage gap just before the torus interface
valve. The first stage has a 59 L volume and high conductance pipe work to a
1000 L buffer tank. The second stage has 36 L of volume also connection to the
main buffer tank. The third stage has 90 L of volume that is pumped by a
turbopump. The total injection line length is ~ 6 m and has an inner diameter of
19 mm.

Funnel

The JET SPI pumping system [7] was tested by shooting gas only shots into the
torus. The resulting torus pressure increase from the gas flowing into the torus
from a 2 ms valve pulse was measured while the torus pumps were closed off,
thus an accurate inventory of gas introduced into the torus was obtained. For
the largest barrel, 12.5 mm, 2.3 mbar-L was measured to enter the JET torus
and the amount of gas leaving the propellant valve was measured to be 600 S bend
mbar-L, thus the percentage of the fired propellant gas that entered the torus
was less than 0.4%. The other smaller barrels showed even lower amounts of
gas entering the torus. With a pellet in the barrel, more of the gas pushing the
pellet will be directed sideways in the injection line gaps and thus lower
amounts of gas are expected to enter the torus in actual pellet injections.

) Shatter
bend

FIG. 4 JET SPI shatter

The JET SPI non-argon pellets are formed at ~6 K cryostat temperature and are -
tube with entrance

warmed up by heaters to fire at 12.5 K after being held at that temperature for

. _p . . . funnel at the top and S
typically 60 sec before firing. An automation pellet formation routine was bend and final sharp
generated in the PLC logic to simplify operation and maintain consistency. No bend at the exit at the
operational differences were found between automatically formed pellet and bottom.
those formed by manually controlling the gas flow. Warmup of the barrel
coldzones is routinely done after firing a pellet to remove any remaining solid in the barrel. This is achieved on
JET by stopping the cold helium flow and using the cartridge heaters on the cryostat of the injector under PLC
control. The cryostat rapidly warms to ~30 K in less than 1 minute. Cooling back down after the warmup to be
able to form another pellet takes less than 5 minutes. Operation with argon pellets uses much less helium flow
to achieve the formation temperatures of ~ 50 K and firing temperatures of 68 K. Depending on the size of the
pellet the cycle time is typically between 30 and 40 minutes. Pellets held cold for less than 5 minutes after
formation were more likely to fracture leaving the barrel. Pellets not fired immediately were held for a
maximum of 3 hrs [9].

The KSTAR SPI installation described in Ref. [10] and shown in Fig. 5 has two identical SPIs that are mounted
on the midplane with identical shatter tubes inside the vessel aimed to the plasma magnetic axis after traversing
a 20-degree shatter tube. Unlike the JET SPI that uses cold helium gas, these SPIs are cooled with a cryocooler
that provides enough cooling to achieve 8 K pellet formation temperatures. Cooldown takes under 2 hours to be
at pellet formation conditions, and it takes 5-15 minutes for the formation depending on the pellet size. The
pumping system and infrastructure were all provided by KFE [10] and became operational in Nov. 2019.

The KSTAR SPIs were installed at midplane ports O and G that are 180 degrees apart from each other. Since
both ports are in use by diagnostic and heating systems, the SPIs had to be installed over 10 m away from the
ports with the guide tubes routed underneath these existing systems. The injection lines as well as the SPIs are
identical on both KSTAR systems.

The KSTAR system injection line uses the same basic design as the DIII-D SPI2 with different pumps and
connecting piping. The KSTAR injection line consists of two 10 cm pumping gaps for preventing the propellant
gas from reaching the plasma in front of the pellets. Both of these gaps have a 28 L high conductance volume
connected to the DN100 conflat cubes where the gaps are located. The injection line diameters are 12 mm up to
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FIG. 5. KSTAR Dual SPI installation on O and' G midplane ports that are on opposite sides of the machine.

27.5 mm for the final long line that connects to a torus interface gate valve before reaching the shatter tube that
is inside the vacuum vessel. The pumping system that connects to the injection line was designed and installed
by KFE using dry screw pumps and turbo pumps. The overall injection line is 10.4 m from the microwave
cavity to the end of the shatter tube.

The shatter tube used on both SPIs shown in Fig. 6 is a 20-degree bent tube with a 32 mm inner diameter and
does not require a funnel at the entrance since the diameter is larger than before the torus interface gate valve
jump. This is quite similar to the DIII-D SPI shatter tube differing by a longer straight section after the bend in
order to avoid fragments hitting the in vessel passive stabilizer. The shatter tubes fit inside the vessel and were
fabricated into two pieces, a straight section that is installed from the outside port flange and the bent section
installed from inside the vessel. The two sections are connected with a conflat flange interface welded to both
sections. The KSTAR shatter tubes are aimed above the lower passive stabilizer toward the plasma axis [10].
The injection line and shatter tubes were all designed and supplied by ORNL with the installation performed by
KFE.

The injection line and pumping system performance
at removing the gas was tested after the installation.
One of the 8.5 mm barrels on an SPI was fired
without a pellet and the torus pressure was measured
to reach 1x10°® mbar indicating the about 3 mbar-L
of gas reached the torus. For the valve settings used
we estimate 600 mbar-L of gas was delivered based i i
on the JET SPI valve measurements. This indicates
that only 0.6% of the gas reached the torus. The
pumps were active during this test and so the
amount of gas is going in the torus is slightly higher
than this estimate. However, when a pellet is fired it
blocks most of the gas from reaching the final guide
tube and therefore, we expect even lower amounts of gas reaching the plasma than measured here.

20° shatter tube 32mm diameter

FIG. 6 KSTAR Dual SPI installation on O and G
midplane ports that are on opposite sides of the
machine. The pumping stand is mounted under the
injector platform.

Cooldown time for the KSTAR SPIs using the cryocoolers typically takes less than 1.5 hours. Once they reach
below 50 K the temperature rapidly decreases to the minimum value of ~8 K. Warmup of the cryostat and
barrel coldzones is routinely done after firing a pellet to remove any remaining solid in the barrel. This is
achieved by using the two cartridge heaters providing up to 40 W on the cryostat of the injector under PLC
control and it rapidly warms to ~30 K in less than 1 minute. Cooling back down from the warmup to be able to
form another pellet takes less than 5 minutes. Oscillations of the cryostat temperature due to the coldhead
operation are found to be +/- 0.4 K. This level of oscillation does not adversely impact the SPI pellet formation
or firing performance at all. The cryocooler is far enough away from the KSTAR machine (> 10 m) that the
magnetic field or radiation does not affect the cryocooler cold head operation.

The SPIs on both JET and KSTAR utilize custom fast acting solenoid valves developed at ORNL [11] for pellet
applications. These valves open in less than 1 ms when actuated by a 180V FET switched power supply that
provides a 30 A current pulse to the solenoid coil. The valves have an internal plenum volume of 5 cm®and an
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external 75 cm? close coupled volume to provide enough gas to accelerate the pellet and to close the valve when
the current pulse ends. In all of the SPI experiments thus far the SPI propellant valves on both devices were
operated with a 2 ms long current pulse with propellant gas pressures of 50-58 bar D2 on JET and 50 bar He on
KSTAR. The amount of gas released by the valves under these conditions is approximately 700 mbar-L. In
both cases the vacuum systems were designed to easily handle this amount of gas and were effective at
preventing it from reaching the plasma in front of the pellet, despite the much higher sounds speed of the gas
compared to the pellet speeds. No attempts have been made thus far in experiments in either JET or KSTAR
to reduce the pellet speeds by reducing the amount of gas used to release the pellet. Slower pellet speeds are
less likely to break on impact with the collector funnel and will result in larger fragment sizes and less gas
formation in the shatter tube [12] and thus is a control knob for future exploration.

4. SPI PERFORMANCE AND RESULTS

The SPI systems on JET and KSTAR have both been used as have the previously installed systems on DIII-D
to study the physics of the plasma shutdown and are not used as true disruption mitigation systems. JET does
have a disruption mitigation system that is based on massive gas injection using large disruption mitigate valves
(DMVs) with different gas mixtures [12]. These DMVs were disabled for the disruptions that were triggered by
the injection of the SPI pellets. In most cases the shutdown experiments utilizing the SPI were performed with
healthy steady state plasma conditions to have identical comparison conditions. In some cases, the plasmas were
purposely forced into a locked mode state just before the SPI injection time to better simulate a real disrupting
plasma that needs to be mitigated [4]. On JET vertical displacement events (VDESs) were triggered in some
cases to demonstrate the utility of SPI in mitigating disruptions resulting from a VDE [4].

4.1 JET

The JET SPI has been used to inject 286 pellets from the various barrels with mostly mixtures of D, and neon
and about 6% with pure argon. A subset of these has been analyzed for speeds from the time of flight between
the microwave cavity and fast camera videos of fragments entering the plasma and is plotted in Fig. 7 as a
function of the microwave cavity signal magnitude. In general, the heavier large pellets are slower as expected
and those fired without the use of a

punch are significantly faster than

similar mass punched pellets. The

data in Fig. 7 is not corrected for

the amount of impurity in the pellet 800

and thus this is not a direct measure

of pellet mass. For similar size 700
pellets the variability in amplitude = 600 .
is largely a function of the amount E o0 lge
of neon. More neon also makes the 3 °
pellets heavier and thus slower. & aoo0 % 12.5mm Punch
The punched pellets are always % 300 oMM
[-%

slow as very little gas is used to
accelerate the pellet once it is 200 AN
released by the punch. The punches
were designed to release pure neon
and argon pellets, which are not 0
releasable by the available gas
pressure alone. The punches
produce a sharp impact on the
pellet that frequently results in
broken pellets, especially if the
pellet contains some percentage of
deuterium.

J.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Microwave Cavity Amplitude

Fig. 7. JET SPI pellet speeds for 4.5 mm (blue), 8.1 mm (orange),
and 12.5 mm (gray) as a function of the microwave cavity signal
amplitude. Argon pellets are on the far right, all others are a
mixture of Dz2and neon.

The JET installation shown in Fig. 1 has the unique feature of a vertical shatter tube with the shatter plume
aimed toward the inner wall to intercept known runaway electron (RE) beam locations generated from argon gas
injection induced disruptions. Observations of the shattered pellet plume in plasmas on JET shown in Fig. 8
verify that the trajectory is as designed with a bias toward the left side of the anticipated 15-degree half angle
shatter cone overlayed in the image. Experiments with the SPI in plasma did not show significant amounts of
propellant gas entering before the pellet fragments from the fast camera videos of the injection process.
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4.2 KSTAR

FIG. 8. a.) Time integrated fast camera image of neon
fragments entering the plasma showing the plume and
expected 15° dispersion cone. b.) Fast camera image of
fragments leaving the JET shatter tube prototype in
laboratory tests. [3].

One of the key reasons for the KSTAR dual SPI
installation is to investigate the performance of
simultaneous injection of SPI pellets from ports on
opposite sides of the machine. Initial dual SPI
results show strong radiation and assimilation at the
time of injection with good pellet arrival
synchronization [5]. The identical SPI systems
make this research possible as the systems have
shown good synchronization as shown in Fig. 9
where 7 mm D, pellets fired from both SPIs arrive
at their respective microwave cavities only 0.13 ms
apart. Initial thermal mitigation experiments with
neon-D, mixtures have been performed with single
and dual SPIs. These results show improved
assimilation of the pellet material into the plasma
with well synchronized pellets [5].

The typical pellet speeds achieved for a subset of
the pellet fired thus far are shown in Fig. 10. All of
these are without a punch and were using a 2ms
valve pulse with the pellets fired at 11 K. The
successful good pellet percentage for the 120 7 mm
pellets fired in the 2020 campaign was 93 %,

The KSTAR SPI diagnostics include fast
camera views of both injection ports [5]. The
fast camera videos of pellets entering the
plasma do not indicate ionization light from
helium propellant gas entering in front of the
pellet fragments as is expected from the small
amount of gas seen entering the torus without a
pellet. A number of the SPI injection videos
were examined with the view shown in Fig. 11.
The duration of fragments seen entering the
plasma from both ports was < 1 ms, which is
consistent with lab fragment analysis taking
into account the velocity spread of 100 m/s
observed in the laboratory shattering video
analysis [13]. The fragments also clearly come
into the plasma above the passive stabilizer 50
cm from the end of the shatter tube as
designed.

SUMMARY

Both SPI systems have been used successfully to support the understanding of SPI plasma shutdown and the
ITER disruption mitigation system design. The propellant gas removal is quite good in both systems, removing
more than 99.5% of the gas, and none has been observed entering the plasma. Observations of the shattered
pellet plume in plasmas on JET verify that the trajectory is as designed and has been successful at intercepting
RE beams. The KSTAR shatter plumes have been observed also to follow the expected trajectory and have
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Fig. 9. a.) Two SPI injectors with identical guide and shatter
tube geometries installed on the KSTAR G and O port flanges.

b.) The microwave cavity signals for 7 mm D2 pellets fired
simultaneously from both O and G ports showing 0.13 ms
synchronization at the cavity location. [3]

durations in the plasma that agree with laboratory measurements of the fragmentation.
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Fig. 10. Pellet speed measured in experiments . .
on KSTAR as a function of the molar fraction Fig. 11. Example of Oport fast camera view of the
of neon in the nellet. SPI fragment interaction with the plasma. The arrow

shows the shattered pellet trajectory with the inner
wall on the left.

Broken pellets are less effective at mitigation; however, they can be avoided with designs that do not utilize a
funnel and with optimization of the formation and firing conditions. Synchronization with identical systems can
be sub millisecond as demonstrated at KSTAR. Operational experience and physics results from both systems
has been very useful in development of the DMS SPI based system on ITER and scaling to performance
expected in the much larger and more energetic tokamak plasmas.
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