

Mechanical and Aerospace Engineering

On Effect of n=2 RMP to Edge Pedestal in KSTAR with Nonlinear MHD Simulation

<u>S.K. Kim^{1,2*}</u>, S. Pamela³, M. Becoulet⁴, G. Huijsmans⁴, O. Kwon⁵, Y. In⁶, J.H. Lee⁷, M. Kim⁷, S.M. Yang⁸, J.K. Park⁸, N. Logan⁹, M. Hoelzl¹⁰, E. Kolemen^{1,8}, Yong-Su Na^{2*}, and JOREK team

¹Princeton University, USA
 ²Department of Nuclear Engineering, Seoul National University, Korea
 ³Culham Centre for Fusion Energy, CCFE, UK
 ⁴CEA, IRFM Saint-Paul-lez-Durance, France
 ⁵Department of Physics, Daegu University, Korea
 ⁶Department of Physics, UNIST, Korea
 ⁷Korea Institute of Fusion Energy, Korea
 ⁸Princeton Plasma Physics Laboratory, USA
 ⁹Lawrence Livermore National Laboratory, USA
 ¹⁰Max Planck Institute for Plasma Physics, Garching, Germany

E-mail: sk42@princeton.edu

2021. May. 11

RMP-induced pedestal degradation are successful explanation for ELM suppression, but have some difficulties in explaining experiment

- RMP is promising ELM suppression method [T. Evans 2004]
 - ✓ Linearly stabilized ELMs with degraded pedestal by RMP-induced islands and stochastic region [Q. Hu PRL 2020].
 → One of promising/successful explanation.
- Addition concept may be needed for full explanation
 - ✓ Possible difficulty to solely describe pedestal degradation with islands.
 → Additional transport induced by RMPs.
 - ✓ Limitations to explain ELM-like mode during suppression. [J. Lee PRL 2016].
 - Contradiction to linearly stabilized ELMs by Degraded pedestal.

Previous work reveals that RMP can induce other transport mechanism and directly affect ELM stability as well as pedestal degradation

- Previous studies on RMP-induced transport
 - ✓ Micro-instabilities [1,2].
 - ✓ Edge kink response [3,4].
 - ✓ Neoclassical toroidal viscosity (NTV) [5,6].
- Direct effect of RMPs on the ELM stability
 - ✓ Effect of RMP induced field structures on ELM stability [7,8].
 - \checkmark ELM mitigation/suppression by RMP-ELM interaction [9-12].

RMP-driven ELM crash suppression considering these aspects.[1] I. Holod et al., Nucl. Fusion 57 (2017), 016005[5] Y.Liu et al., Nucl. Fusion 60 (2020), 036018[9] M. Becoulet et al., PRL 113 (2014), 115001[2] R. Hager et al., Nucl. Fusion 60 (2020),[6] J. Park et al., POP 16 (2009) 056115[9] M. Becoulet et al., PRL 113 (2014), 115001[10] F. Orain et al., Phys. Plasma (2019), 042503

[3] E. Nardon et al., Nucl. Fusion 50 (2010), 034002 [4] F. Orain et al., Nucl. Fusion 57 (2017), 102510

IAEA-FEC 2021. May. 10-15

[5] Y.Liu et al., Nucl. Fusion 60 (2020), 036018
[6] J. Park et al., POP 16 (2009) 056115
[7] M. Willensdorfer et al., PRL 119 (2017), 085002
[8] M. L. Mou et al., Phys. Plasma 25 (2018), 082518

Nonlinear MHD simulation is performed to investigate the

[9] M. Becoulet et al., PRL 113 (2014), 115001
[10] F. Orain et al., Phys. Plasma (2019), 042503
[11] J. Kim et al., Nucl. Fusion (2019), 096019
[12] S.K. Kim et al., Nucl. Fusion (2020), 026009

- 1. Simulation setup
- 2. Effect of RMP-induced plasma response on pedestal profile
- 3. RMP-induced ELM-crash suppression
- 4. Summary

JOREK and PENTRC coupled simulation is developed to simulate RMP-ELM dynamics including RMP response and NTV transport

- JOREK (3D Nonlinear MHD) [G. Huysmans 2009]
 - ✓ Realistic geometries with scrape-off layer is included.
 - ✓ Reduced MHD equation [F. Orain 2013] is used.

 $\frac{\frac{1}{R^{2}}\frac{\partial\psi}{\partial t}}{\partial t} = \eta(T)\nabla \cdot \left(\frac{1}{R^{2}}\nabla_{\perp}\psi\right) - \vec{B} \cdot \left(\nabla u - \tau_{IC}\frac{\nabla p_{e}}{\rho}\right) \qquad Ohm's \ law \qquad w' \ toroidal \ rotation \\ w' \ ion \ diamagnetic \\ w' T_{i} = T_{e}$ $\frac{\partial\rho}{\partial t} = -\nabla \cdot (\rho\vec{v}) + \nabla \cdot (D\nabla\rho) + S_{\rho} \qquad Continuity \ eqn.$ $\frac{\rho\left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla\right)\left(\vec{v}_{E} + \vec{v}_{||}\right) = -\nabla(\rho T) + \vec{J} \times \vec{B} + S_{v} - \vec{v}S_{\rho} + \mu\Delta\vec{v} - \nabla \cdot \vec{\Pi}_{neo}}{\left(\nu_{||}, w\right)} \qquad Momentum \ eqn. \\
\frac{\partial(\rho T)}{\partial t} = -\left(\vec{v}_{E} + \vec{v}_{||}\right) \cdot \nabla\rho T - \gamma\rho T \ \nabla \cdot \left(\vec{v}_{E} + \vec{v}_{||}\right) + \nabla \cdot (\kappa\nabla T) + (1 - \gamma)S_{T}$ $\frac{d(\rho T)}{\partial t} = -\left(\vec{v}_{E} + \vec{v}_{||}\right) \cdot \nabla\rho T - \gamma\rho T \ \nabla \cdot \left(\vec{v}_{E} + \vec{v}_{||}\right) + \nabla \cdot (\kappa\nabla T) + (1 - \gamma)S_{T}$

- PENTRC (NTV) [N. Logan 2013]
 - ✓ NTV calculation code based on the given plasma equilibrium, profiles, and plasma displacements.
 - ✓ Inclusion of NTV by JOREK-PENTRC coupling.

n = 2 RMP-driven ELM crash suppression in KSTAR is numerically reproduced

- Reference discharge
 - \checkmark KSTAR ELM suppression discharge (#18594) with n=2 ($\phi=90^{\circ}$) RMPs.

$$\checkmark I_{\rm p} = 690 \, {\rm kA}, \ q_{95} \sim 4, \beta_{\rm N} \sim 2., \overline{n}_{\rm e} = 3.3 \times 10^{19} \, {\rm m}^{-3}.$$

- ✓ Stable ELM suppression entry at $I_{\rm RMP} \ge 3.5$ kA.
- ✓ Simulation with x10 larger neoclassical resistivity due to numerical reasons.
- ✓ Simulation with $I_{\rm RMP} = 4$ kA.

- 1. Simulation setup
- 2. Effect of RMP-induced plasma response on pedestal profile
- 3. RMP-induced ELM-crash suppression
- 4. Summary

RMP response is the kink-tearing response which can contribute to the enhanced convective/conductive pedestal transport

- Kink tearing responses by RMP
 - ✓ Kink + tearing response (KTM).
- Kink $\{\checkmark$ Edge localized perturbation.
- Tearing $\int V_{\perp e} = 0$ layer and finite resistivity. \checkmark Field penetration into the pedestal.

- $\checkmark V_{\rm E \times B}$ and stochastic layer in the pedestal.
- $\checkmark\,$ Degradation of the mean pedestal.
- ✓ Increased radial flux due to
 - $\Gamma_{\mathrm{E} imes \mathrm{B} \perp}$ convection (Mainly n_{e}).
 - Island and stochastic layer ($n_{
 m e}$ and T).

Plasma response causes NTV particle transport, resulting in further pedestal degradation, partially explaining pump-out

- NTV induced by plasma response
 - ✓ Plasma displacement (ξ_{\perp}) induced by RMPs.
 - ✓ Resulted NTV fluxes.
 - Torque $au_{
 m NTV}$
 - Particle flux Γ_{NTV}
- Effect of NTV transport
 - ✓ Further degradation of $n_{\rm e}$ pedestal by $\Gamma_{\rm NTV}$ ✓ Kink + NTV (40% of Exp.).
 - → Considerable effect of kink and NTV on pump-out.

MHD modeling with NTV explains pedestal degradation to some extent, but additional mechanism has to be introduced for full explanation

- Net decrease in pedestal gradient
 - Pedestal degradation by plasma response
 + NTV transport.
 - ✓ ~40% decrease in pressure gradient (close to Experimental level).

[Decreased pressure gradient by RMP]

- Additional pump-out mechanisms
 - ✓ RMP induced micro-instabilities [R. Hager 2020].
 - ✓ Particle transport by polarization drift [Q. Hu 2019].
 - \rightarrow They will be needed to fully explain the pump-out.

ExB convection and NTV flux largely contribute to the pump-out, but full explanation requires additional transport mechanisms.

- 1. Simulation setup
- 2. Effect of RMP-induced plasma response on pedestal profile
- 3. RMP-induced ELM-crash suppression
- 4. Summary

Natural ELM simulation (without RMPs) shows good agreement with experimental observations

- Linear ELM simulation
 - ✓ Consistent dominant $n_{\rm ELM} = 12$.
 - ✓ Consistent poloidal velocity $V_{\theta,\text{ELM}}$ ~3 km/s.
 - ✓ $V_{\theta,\text{ELM}} \approx V_{\theta,\text{E}\times\text{B}}$ (ion diamagnetic) [1,2].
- Nonlinear phase
 - $\checkmark\,$ Mode crash during nonlinear phase.
 - $\checkmark \Delta W_{\rm ELM,sim} \approx 8 \, {\rm kJ} \, (\Delta W_{\rm ELM,exp} \approx 7 \pm 4 \, {\rm kJ}).$
 - → Experimentally relevant ELM is obtained. ($V_{\theta,\text{ELM}} \approx V_{\theta,\text{E}\times\text{B}}$)

[[]Mode amplitude in NL phase]

[1] M. Becoulet M. et al, NF (2017), 116059[2] J. Morales, POP (2016), 042513

ELM crash suppression by experimentally relevant RMP configuration is successfully reproduced in the simulation

- RMP-driven ELM crash suppression
 - ✓ Strongly suppressed mode amplitude.
 - ✓ Disappeared bursty nonlinear mode crash.

ELM crash suppression by experimentally relevant RMP configuration is successfully reproduced in the simulation

- RMP-driven ELM crash suppression
 - ✓ Strongly suppressed mode amplitude.
 - ✓ Disappeared bursty nonlinear mode crash.
 - ✓ Existing filament structures in suppression case.
 - ✓ Spatially locked structure [J. Lee 2019].
 - → ELM is nonlinearly saturated rather than linearly stabilized, so filament can remain.

[Nonlinear evolution of ELM]

[Filament motions]

ELM crash suppression by experimentally relevant RMP configuration is successfully reproduced in the simulation

- RMP-driven ELM crash suppression
 - ✓ Strongly suppressed mode amplitude.
 - ✓ Disappeared bursty nonlinear mode crash.
 - ✓ Existing filament structures in suppression case.
 - ✓ Spatially locked structure [J. Lee 2019].
 - → ELM is nonlinearly saturated rather than linearly stabilized, so filament can remain.
- Suppression above RMP threshold
 - ✓ Mitigated with small RMP amplitude.
 - ✓ Fully suppressed at $I_{\rm RMP}$ > 3 kA.

 \rightarrow It is consistent to experimental level (~4kA).

11/18

Degraded pedestal and RMP-ELM mode coupling make ELM crash suppression, but they must participate simultaneously

• Effect of degraded pedestal on ELM stability

✓ ~40% decreased pedestal gradient by RMPs.

✓ ~65% decreased growth rate.

Coupling between RMP and ELM harmonics

Degraded pedestal

RMP-ELM coupling

- No crash suppression without coupling effect.
 (Even with decreased growth rate)
- ✓ ELM crash suppression by combined two effects.

RMP-ELM coupling further degrades the pedestal by increasing transport, resulting in the reduced ELM instability

- Enhanced pedestal transport by coupling effect
 - ~15% increased radial perturbed fields by coupling effect. (Tearing component)
 - \checkmark Enhanced pedestal transport with increased island width.
 - $\checkmark\,$ Further decrease of pedestal gradient.

→ Reduced ELM instability source

RMP-ELM coupling results in broad mode spectrum and increased interactions between ELM harmonics, preventing unstable ELM crash

- Enhanced harmonic interactions by coupling effect
 - ✓ Unlike ELMy, enhanced energy correlation among harmonics. [J. Kim NF 2019]
 - ✓ Broadened mode spectrum.
 - ✓ Large growth of unstable harmonic: ELM crash
 - ✓ Prevented mode crash due to broad spectrum and mode interactions. [P. W. Xi, PRL 2014]
 - ✓ Therefore, nonlinearly saturated ELMs by

✓ Important quantities for RMP-ELM coupling?

time [Mode spectrum vs time]

Overlap of magnetic islands near the pedestal top can be important to RMP-ELM coupling and ELM suppression

- Spatial overlap of harmonics
 - ✓ Overlap of harmonics: Favorable to their couplings [Rhee POP2015].
 - ✓ Existing harmonics,
 - ELM harmonics
 - RMP-Kink (peeling) \rightarrow Localized to LCFS.
 - RMP-Tearing (island) → Wide radial range.
- Island overlap near the pedestal top
 - \checkmark I_{RMP} scan to adjust island width near pedestal top.
 - ✓ ELM suppression entry where island overlap starts.
 (Chiricov S = 1 between 8/2+9/2)
- → Overlap of RMP-induced islands can be advantageous for RMP-ELM coupling and suppression.

n=2 Island overlap

Slow poloidal rotation of ELM structure can be advantageous for enhancing the RMP-ELM interaction and achieving ELM suppression

- Poloidal mode rotation and RMP-ELM coupling
 - ✓ Well sustained mode overlap: Favorable to coupling.
 - ✓ Sustained spatial overlap ($|V_{\theta,ELM} V_{\theta,RMP}| \approx 0$). → Stationary phase difference (δ) of RMP and ELM.

Slow poloidal rotation of ELM structure can be advantageous for enhancing the RMP-ELM interaction and achieving ELM suppression

- Poloidal mode rotation and RMP-ELM coupling
 - \checkmark Well sustained mode overlap: Favorable to coupling.
 - ✓ Sustained spatial overlap ($|V_{\theta,ELM} V_{\theta,RMP}| \approx 0$). → Stationary phase difference (δ) of RMP and ELM.
 - ✓ Static RMP, V_{θ,RMP} = 0.
 →V_{θ,ELM} ≈ 0 to make stationary δ.

Time [*Time evolution of* $\cos \delta$]

[[]Filament motions]

Slow poloidal rotation of ELM structure can be advantageous for enhancing the RMP-ELM interaction and achieving ELM suppression

- Poloidal mode rotation and RMP-ELM coupling
 - \checkmark Well sustained mode overlap: Favorable to coupling.
 - ✓ Sustained spatial overlap ($|V_{\theta,ELM} V_{\theta,RMP}| \approx 0$). → Stationary phase difference (δ) of RMP and ELM.
 - ✓ Static RMP, $V_{\theta,RMP} = 0$. → $V_{\theta,ELM} \approx 0$ to make stationary δ.
- Small $V_{\theta, E \times B}$ for RMP-ELM interaction
 - ✓ $V_{\theta,\text{ELM}} \approx V_{\theta,\text{E}\times\text{B}}$ [1, 2] at pedestal. → $V_{\theta,\text{E}\times\text{B}} \approx 0$ is favorable.
 - ✓ No suppression with <u>large</u> $V_{\theta,E\times B}$ at pedestal top.
 - → Small $V_{\theta,\text{ELM}}$ (or $V_{\theta,\text{E}\times\text{B}}$) be advantageous for RMP-ELM coupling and suppression.

1.0

Oscillatory $V_{\theta,\text{ELM}} \gg 0$

16/18

4000

Summary

- n=2 RMP-driven pedestal degradation and ELM suppression
 - ✓ Pedestal degradation by RMP response and NTV, explaining the experiment to some extent.
 - ✓ Numerical reproduction of nonlinearly saturated ELM suppression.
 - Reduced pedestal gradient.
 - Mode coupling between RMP and ELM.

RMP-ELM coupling contributes to the ELM-crash suppression

- ✓ Further decreasing pedestal gradient. \rightarrow ELM driving source ↓
- \checkmark Enhanced interactions between ELM harmonics. \rightarrow Prevent NL mode crash

Favorable conditions for RMP-ELM coupling

- ✓ Overlap of RMP-induced islands near the pedestal top.
- ✓ Small rotation of ELM structure or $V_{\theta,E\times B} \approx 0$ at the pedestal.

Mechanical and Aerospace Engineering

Thank You

Backup – Plasma displacement from JOREK perturbation

• Approximated displacement from nonlinear perturbation

- ✓ $T_{n=0}$ is dominant.
- \checkmark Uniformity of T on the flux surface due to large parallel heat conduction.
- ✓ Therefore, $\xi_{\perp,n,m} \sim -\delta T_{n,m} / \nabla T_{n'=0}$
- ✓ Less accurate under the presence of stochastic layer.
- ✓ No δB_{\parallel} component in reduced MHD.
- ✓ ξ_{\parallel} derived from linearized force balance equation ($\delta F(\xi_{\perp}, \xi_{\parallel}) = 0$).

Backup - In summary, RMP-ELM coupling can contribute to ELM crash suppression in two aspects

• Role of RMP-ELM coupling in ELM crash suppression

ELM Crash Suppression

Important quantities for RMP-ELM coupling?

Spatial overlap between RMP-induced modes and ELM harmonics seems to be important.

Numerical setup

- ✓ Neoclassical constraint (V_{neo}) is applied to construct the ion-poloidal flow.
- $\checkmark V_{\theta, E \times B}$ in the pedestal region is in the <u>ion-diamagnetic</u> direction.
- $\checkmark T_i = T_e$ is assumed.
- ✓ Adaptive diffusive profile and source are used to sustain the ρ , T, v_{ϕ} profiles.
- ✓ x10 resistivity (x40 spitzer) and braginskii parallel conductivity are used.

Backup - Coupling simulation shows experimentally reasona ble results

- Code coupling test
 - ✓ Well reconstructed ξ_{\perp} including kink and partial tearing component.
 - ✓ Successful calculation of NTV-driven particle flux and torque.
 - ✓ A reasonable value from code coupling.

Backup – tearing response

Tearing response

40

20

-20

0.8

 v_{\perp} [km/s]

- ✓ Perturbed current shields the external field.
- $\checkmark v_{\perp e} pprox 0$ layer and finite resistivity in the edge weaken the field shielding.
- \checkmark Field penetration occurs in the pedestal region.

 2π

 $heta_{
m geo}$

0.8

1.1

✓ As a result, stochastic layer is formed.

 $v_{\perp,e} = 0$

1.0

 $\psi_{\rm N}$

[Perpendicular flow profile]

IAEA-FEC 2021. May. 10-15

0.9

 $v_{\perp, E imes B}$

 $v_{\perp.e}$

Backup – profile comparison (kink-tearing only)

- Pedestal profile degradation
 - ✓ Radial transport increases due to
 - $v_{\mathrm{E} imes \mathrm{B} \perp}$ convection (Kink).
 - Stochastic layer (Tearing).
 - ✓ Pedestal profile (n=0) is degraded.
 - ✓ Density pedestal is governed by $v_{E \times B, \perp}$.
 - ✓ It is consistent with the trend that pump-out increases with kink response [1,2].
 - ✓ T pedestal shows a similar tendency in the experiment and simulation.

[1] Y. Liu et al., PPCF 58 (2016), 114005[2] C. Paz-Soldan et al., Nucl. Fusion (2016), 056001

Backup – Vorticity and ExB profiles

• Vorticity and ExB profiles in the simulation

- \checkmark Reduced vorticity U_{00} during ELM suppression
 - Possibility of evenly distributed energy among harmonics [H. Jhang 2017].

- ✓ ExB radial profile comparison
 - $V_{\theta, E \times B}$ is increased from 3 to 15 km/s.
 - Decoupling of $V_{\theta,E\times B}$ and $V_{\theta,ELM}$ can occur in very nonlinear case.

Backup - RMP-ELM interaction can increase spectral transfer and broaden mode spectrum of ELM, preventing crash of unstable ELM

Increased spectral energy transfer by RMP-ELM coupling

- ✓ Enhanced interaction between ELM harmonics with RMP [M. Becoulet 2014].
 - Amplified energy transfer between harmonics and broadened spectrum
- ✓ Prevented catastrophic growth and crash of unstable mode [P. Xi 2014].
- \checkmark Participation of both tearing and twisting parity modes in the mode coupling.
 - Both kink and tearing part by RMP mediates the mode interactions.

Backup - Both kink and tearing response by RMP have to spatialy cover pedestal to mediate interactions between ELM

 $\checkmark\,$ Covering the pedestal and overlapping of RMP mode to mediate interactions.

- Kink-peeling → Overlap is easy, but localized to LCFS.
- Tearing \rightarrow Wide radial range, but sufficient island width needed for overlap.

✓ Chiricov parameter (> 1) near the <u>pedestal top</u> (S_{89}).

- $n = n_{\text{RMP}}$ island overlap to couple with higher n's.
- ELM suppression as island overlap occurs.

Position of rational surfaces and island width are important.

Backup - Importance of RMP-ELM coupling addresses required or advantageous conditions for RMP-driven ELM crash suppression

- Conditions for the interactions between RMP and ELM
 - ✓ Kink-peeling favorable MP configuration.
 - Rational surface ($q = m/n_{\rm RMP}$) near the pedestal top.
 - Island to cover the entire pedestal and dominant ELMs.
 - \checkmark Chiricov parameter (S > 1) near the pedestal top.
 - $n = n_{\text{RMP}}$ island overlap to couple with higher n's.
 - $\checkmark V_{\theta,\text{ELM}} \approx 0$ before RMP application.
 - Favorable to the locking of ELM.