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RMP-induced pedestal degradation are successful explanation for 
ELM suppression, but have some difficulties in explaining experiment
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ÅRMP is promising ELM suppression method [T. Evans 2004]

VLinearly stabilized ELMs with degraded pedestal by RMP-induced 
islands and stochastic region [Q. Hu PRL 2020].

ĄOne of promising/successful explanation.

VPossible difficulty to solely describe pedestal degradation with islands.
Ą Additional transport induced by RMPs.

ÅAddition concept may be needed for full explanation

[ELM-like mode in suppression ,J. Lee (PRL 2016)]

VLimitations to explain ELM-like mode during 
suppression. [J. Lee PRL 2016].

ĄContradiction to linearly stabilized ELMs
by Degraded pedestal.
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Previous work reveals that RMP can induce other transport mechanism 
and directly affect ELM stability as well as pedestal degradation
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ÅPrevious studies on RMP-induced transport

VMicro-instabilities [1,2].

VEdge kink response [3,4].

VNeoclassical toroidal viscosity (NTV) [5,6].

Focus on pedestal transport 
by plasma response and NTV

[9] M. Becoulet et al., PRL 113 (2014), 115001
[10] F. Orain et al., Phys. Plasma (2019), 042503
[11] J. Kim et al., Nucl. Fusion (2019), 096019
[12] S.K. Kim et al., Nucl. Fusion (2020), 026009

ÅDirect effect of RMPs on the ELM stability 

VEffect of RMP induced field structures on ELM stability [7,8].

VELM mitigation/suppression by RMP-ELM interaction [9-12].

Nonlinear MHD simulation is performed to investigate the 
RMP-driven ELM crash suppression considering these aspects.

Direct ELM stabilization
by RMPs
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[7] M. Willensdorfer et al., PRL 119 (2017), 085002
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JOREK and PENTRC coupled simulation is developed to simulate 
RMP-ELM dynamics including RMP response and NTV transport
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VRealistic geometries with scrape-off layer is included.
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VReduced MHD equation [F. Orain2013] is used. 

[ Grid for KSTAR ]

ÅJOREK (3D Nonlinear MHD)[G. Huysmans 2009] 

VNTV calculation code based on the given plasma
equilibrium, profiles, and plasma displacements.

V Inclusion of NTV by JOREK-PENTRC coupling.

ÅPENTRC (NTV) [N. Logan 2013]

JOREK PENTRC

RMP response

NTV particle fluxes
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▪ RMP-driven ELM crash suppression in KSTAR is numerically 
reproduced
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ÅReference discharge

VKSTAR ELM suppression discharge (#18594) with ▪ (ꜚ Ј) RMPs.

V╘Ἰ ἳἋȟ▲ ͯ ȟ♫Ἒͯ Ȣȟ▪Ἥ Ȣ ἵ .

VStable ELM suppression entry at ╘ἠἙἜ ȢἳἋȢ

VSimulation with x10 larger neoclassical resistivity due to numerical reasons.

VSimulation with ╘ἠἙἜ ἳἋ.

RMP only simulation (n=0 and 2)

RMP simulation with ELMs (n up to 14)

[#18594 overview]
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[ ἏἌ profiles]
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[Perturbations]

♯▪Ἥ

RMP response is the kink-tearing response which can contribute 
to the enhanced convective/conductive pedestal transport
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ÅKink - tearing responses by RMP

ÅResulted pedestal degradation

VEdge localized perturbation.

V╥Ἇ Ἄand stochastic layer in the pedestal.

Kink

VDegradation of the mean pedestal.

V Increased radial flux due to

- Ἇ Ἄ convection (Mainly ▪Ἥ).
- Island and stochastic layer (▪Ἥand ╣).

V╥Ἥ layer and finite resistivity.
VField penetration into the pedestal.

Tearing

[Poincare plot]

Stochastic 
layerVKink + tearing response (KTM).

[Profile degradation]

▪Ἥ

╣
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Plasma response causes NTV particle transport, resulting in further 
pedestal degradation, partially explaining pump-out
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ÅNTV induced by plasma response

VResulted NTV fluxes.

VFurther degradation of ▪Ἥpedestal by Ἒἢἤ
VKink + NTV (40%of Exp.).

ĄConsiderable effect of kink and NTV 
on pump-out.

ÅEffect of NTV transport

VPlasma displacement (Ⱪ ) induced by RMPs.

- Torque ⱲἚἢἤ
- Particle flux Ἒἢἤ

[NTV particle & momentum fluxes]

[Further ὲ degradation by NTV]



IAEA-FEC 2021. May. 10-15

MHD modeling with NTV explains pedestal degradation to some extent, 
but additional mechanism has to be introduced for full explanation
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ÅNet decrease in pedestal gradient

V~40% decrease in pressure gradient 
(close to Experimental level).

VParticle transport by polarization drift [Q. Hu 2019].

ÅAdditional pump-out mechanisms

VRMP induced micro-instabilities [R. Hager 2020].

Ą They will be needed to fully explain the pump-out.

VPedestal degradation by plasma response 
+ NTV transport.

[Decreased pressure gradient by RMP]

ExB convection and NTV flux largely contribute to the pump-out, 
but full explanation requires additional transport mechanisms.
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Natural ELM simulation (without RMPs) shows 
good agreement with experimental observations
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ÅLinear ELM simulation

VConsistent dominant ▪ἏἘἙ .

VConsistent poloidal velocity ╥ȟἏἘἙͯ ἳἵȾἻ.

V╥ȟἏἘἙ ╥ȟἏ Ἄ(ion - diamagnetic) [1,2].

ÅNonlinear phase

VMode crash during nonlinear phase.

[ECEI and JOREK n=12 results]

σËÍȾÓ

[Mode amplitude in NL phase][1] M. Becoulet M. et al, NF (2017), 116059
[2] J. Morales, POP (2016), 042513

V ╦ἏἘἙȟἻἱἵ ἳἔ( ╦ἏἘἙȟἭὀἸ ἳἔ).

Ą Experimentally relevant ELM is obtained. 

(╥ȟἏἘἙ ╥ȟἏ Ἄ)
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ELM crash suppression by experimentally relevant RMP 
configuration is successfully reproduced in the simulation
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ÅRMP-driven ELM crash suppression

VStrongly suppressed mode amplitude.

VDisappeared bursty nonlinear mode crash.

[Nonlinear evolution of ELM]

ELMy

RMP+ELM
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ELM crash suppression by experimentally relevant RMP 
configuration is successfully reproduced in the simulation
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ÅRMP-driven ELM crash suppression

VStrongly suppressed mode amplitude.

VDisappeared bursty nonlinear mode crash.

VExisting filament structures in suppression case.

[Filament motions]

Supp.ELMy

VSpatially locked structure [J. Lee 2019].

Ą ELM is nonlinearly saturated rather than 
linearly stabilized, so filament can remain. [Nonlinear evolution of ELM]

ELMy

RMP+ELM



[Mode amplitude vs RMP]
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ELM crash suppression by experimentally relevant RMP 
configuration is successfully reproduced in the simulation
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ÅRMP-driven ELM crash suppression

VStrongly suppressed mode amplitude.

VDisappeared bursty nonlinear mode crash.

VExisting filament structures in suppression case.

VSpatially locked structure [J. Lee 2019].

Ą ELM is nonlinearly saturated rather than 
linearly stabilized, so filament can remain.

ÅSuppression above RMP threshold

VMitigated with small RMP amplitude. Mitigated

VFully suppressed at ╘ἠἙἜ ἳἋ.

Ą It is consistent to experimental level (~4kA).

[Nonlinear evolution of ELM]

ELMy

RMP+ELM
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Degraded pedestal and RMP-ELM mode coupling make ELM 
crash suppression, but they must participate simultaneously
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ÅEffect of degraded pedestal on ELM stability

VNo crash suppression without coupling effect.
(Even with decreased growth rate)

VELM crash suppression by combined two effects.

Degraded pedestal RMP-ELM coupling

[ELM linear growth rate]

Stabilized

V~40% decreased pedestal gradient by RMPs.

V~65% decreased growth rate.

ÅCoupling between RMP and ELM harmonics

VELM suppression simulation contains two effects.

[ELM amplitude comparison]How RMP-ELM coupling affects ELM suppression ?



[Pedestal degradation by coupling]
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RMP-ELM coupling further degrades the pedestal by increasing 
transport, resulting in the reduced ELM instability
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ÅEnhanced pedestal transport by coupling effect

V~15% increased radial perturbed fields by coupling effect. (Tearing component) 

ĄReduced ELM instability source

VEnhanced pedestal transport  with increased island width.

VFurther decrease of pedestal gradient.

Decrease


