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Tungsten samples pre-damaged by ion beam (GLADIS [1]) or plasma exposure (PSI-2 [2]), inducing

tungsten fuzz. Exposure to Tokamak He plasmas (ASDEX-U, WEST). Results:
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LATEST RESULTS OF EUROFUSION PLASMA- FACING 

COMPONENTS RESEARCH IN THE AREAS OF POWER LOADING, 

MATERIAL EROSION AND FUEL RETENTION

• The EUROfusion Work Package Plasma-Facing Components focuses on critical plasma-surface

interaction studies. Experiments from the lab-scale to tokamak scale are performed and supported by

dedicated modelling activities.

• The wide range of experiments allows the investigation of single aspects as well as synergistic effects.

The most important highlight results from 2018-2020 are presented here:

• W-He interaction observed under a variation of exposure parameters

• W surface modification and erosion is modelled and benchmarked against experiments

• High fluence-, shaping- and ELM-simulation experiments with ITER-like monoblocks

• Fuel retention studies with the influence of seeding gasses and neutron damage

Abstract

High- fluence

exposure of ITER-

like monoblocks in

MAGNUM-PSI [10],

record fluence of

1031 D/m2, no visible

damages and very

low fuel retention.

Qualification of ITER-like monoblocks

W-He interaction / tungsten fuzz

W surface modifications and erosion

• W-He interaction and W fuzz creation (relevant for lifetime estimations of the ITER divertor): W fuzz

creation extremely dependent on location w.r.t. strike point and machine parameters

• 3D W erosion models are applied to benchmark JET and WEST experiments and to predict Be migration

in ITER. Successful implementation of surface effects was demonstrated as well.

• High fluence-, shaping- and ELM-simulation experiments giving valuable input to the qualification of the

operational window of the W divertor: ITER-like monoblocks withstand high-fluence plasma exposure

with no visible damage and low fuel retention, but synergistic effects (plasma + heat load) could lower the

damage thresholds

• Results from fuel retention studies show that nitrogen can increase the fuel retention significantly in the

surface region of the sample, while simultaneous ion damaging and plasma exposure leads to an

increase in fuel retention due to damage stabilization by implanted deuterium

Conclusions
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New tungsten fuzz

formed. Independent
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structure. Fuzz and

He nanobubbles also

formed inside FIB cut.

AUG H-Mode, ELMs,

At strike line [3]

Erosion of 200 nm of

pre-established

tungsten fuzz.
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Below strike line [4]

Arcing occurs at pre-

established tungsten

fuzz. Net deposition

with more dense

structure on top of

tungsten fuzz.

AUG L-Mode, at strike

line [4]

Only marginal erosion and

deposition in pre-

established tungsten fuzz

WEST long pulse L-Mode He

plasma with W fuzz conditions

on W coated surface [3]:

No evidence of W

nanostructure after

exposure.

Different behaviour of W

coating / other WEST

specific conditions?

Sputtering yield of W fuzz

also investigated under

laboratory conditions:

Ion beam experiments [5]

show lower sputtering and

weaker angular dependence

compared to flat target and

standard SDTrim modelling.
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PISCES-B cooperation between WP PFC and UCSD for studies related to Be:

Needle structure 

on Be in PISCES-

B [8]

Interpretation of sputtering 

inside the needle structure [7] 

Angular dependence of the

effective sputtering yield [7]

1mm 10 µm

Improved models with implemented 3D surface structure [6] can reproduce

the reduced sputtering yield and surface structure development.

Local damage of 

optical hotspots on 

shaped/misaligned 

monoblocks in WEST 

[11].

Particle and power flux modelled

by PIC simulations and applied

for ITER predictions about

castellation and shaping. [12]

ELM-Simulations with combined plasma and

laser exposure at PSI-2 [13].

Damage threshold 

map shows 

variation of 

damage types up 

to record number 

of 106 transients.

Synergistic effects 

(plasma+laser

exposure) reduce 

the damage 

threshold compared 

to pure laser 

exposure. 

Impact of nitrogen seeding on fuel

retention in tungsten [15]:

1) N : increased fuel retention

2) N+He: reduces the positive effect of

He on fuel retention

3) N+Ar: Lower fuel retention increase

than case (1) due to erosion

Impact of neutron damages (W Ion self damage as

proxy) on fuel retention [16]:

Simultaneous ion 

damaging and plasma 

exposure enhances fuel 

retention compared to 

sequential damaging 

and exposure: defect 

stabilization by trapped 

deuterium.

The defect stabilization 

mechanism was 

implemented 

successfully in fuel 

retention modelling [17].

Typical needle 

structure of Be 

samples from PISCES-

B USCD [8] was 

successfully 

implemented and 

interpreted with 

modelling.
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Newly developed 

advanced materials 

(microstructured

tungsten) [14] have 

higher damage 

thresholds under 

the same conditions.


