OV/P-1203: Advances in physics and applications of 3D magnetic perturbations on J-TEXT

N C Wang, Y. Liang, on behalf of the J-TEXT team*

International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics (IFPP), AEET, SEEE, HUST, China

* See the Appendix of Liang Y. et al 2019 Nucl. Fusion 59 112016

1. Summary

Over the last 2 years, the J-TEXT researches has contributed to the impacts of 3D MP fields on MHD instabilities, disruptions.

• Three major achievements have been made on J-TEXT in supporting for the expanded operation regions and diagnostic capabilities, i.e. the 105 GHz/500 kW/1 s ECRH system, the poloidal divertor configuration and upgrades of several new diagnostics.

- The locked mode (LM) threshold are observed to vary nonmonotonically on electron density on q = 2 and 3 surfaces. LM has been unlocked from the RMP field by electrode biasing (EB). Three kinds of standing wave (SW) structures have been observed to share a similar connection to the 2/1 island structure.
- The massive gas injection (MGI) can suppress the runaway electron (RE) generation, if it arrives at the plasma edge before TQ. MGI can dissipate RE current with a saturated rate of 28 MA/s on J-TEXT.

A. Density scaling of the RMP penetration threshold • Both the thresholds of (a) 2/1 and (b) 3/1 LM are observed to vary non-monotonically on electron density.

✓ The toroidal rotation @ $r_{s,a=2}$ also vary non-monotonically on n_e

✓ Scaling includes rotation shows little density dependence $b_{rth}^{2/1} \propto n_e^{-0.18\pm0.04} f_0^{1.04\pm0.25}$

B. Locked mode control via electrode biasing

• The electrode biasing (EB) was applied successfully to unlock the LM from either a static or rotating RMP field.

• Both the phase and width of the RMP induced 2/1 LM are found to influence the MGI shutdown dynamics and RE generation.

2. Introduction

A. J-TEXT tokamak

- **B.** Successful operation of ECRH systems
- 105 GHz/0.5 MW/1s, successfully commission in 2019/06
- ✓ X2 mode
- \checkmark Poloidal and toroidal angle is around ±20°
- 0.4 MW injection: T_{e0} increases
- Main parameters Ohmic plasma in limiter conf. ECRH 500 kW, Poloidal Divertor. R = 1.05 m, a = 0.255 m (limiter) $I_{\rm p} < 240 \text{ kA}, B_{\rm T} = 1.2 \sim 2.5 \text{ T}$ $n_e = 0.5 \sim 7 \times 10^{19} \text{ m}^{-3}$ $T_{e0} \sim 1 \sim 1.5 \text{ keV}, T_{i0} \sim 0.5 \text{ keV}$ Auxiliary Systems RMP, EB, SMBI MGL, SPI C. Operation of the poloidal divertor configuration (Chen Z P, P5-1199, Thur. 8:30) • The poloidal divertor
- configuration with an X-point in the HFS has been achieved from the end of 2018
- The 400 kW ECW has also been

C. Standing waves in the presences of magnetic islands

- In the presence of 2/1 LM, three kinds of standing wave (SW) structures have been observed to share a similar connection to the island structure, i.e.
- the **nodes** of the SWs locate around the **O- or X- points** of the 2/1 island.
- ✓ the forced oscillation of the island phase due to rotating RMP (1~6 kHz) [a, b]
- ✓ BAE(Beta-induced Alfvén Eigenmodes) at 20 ~ 50 kHz [c,d]
- ✓ A SW appearing spontaneously at ~ 3 kHz without any external 3 kHz RMP field
- Future comparison between the second SW, i.e. BAEs, and the third SW would be important to reveal the mechanism of their formation.

4. Progress on the Disruption Control See [Chen Z, P5-1202, Thur. 8:30] for dual-SPI results

3. Progress on MHD researches

A. Suppression of runaway current by MGI and MET • If the time when the additional - w/o MGI2 MGI2 delay time high-Z impurity gas arrives at +1.5 ms -+1.1 ms the plasma edge, t_{arrival,MGI2}, is before the thermal quench ¥ 100 *10²⁰ Ar MGI2 (TQ), the runaway current (I_{RF}) can be significantly suppressed (magenta) by weakening the 00 0.404 - - - _ _0.408 (b) Time series of gas injection - - - -

B. Dissipation of runaway current

• When the secondary MGI has been applied after the formation of RE current plateau, the RE current can be dissipated, and the dissipation rate increases with the injected impurity quantity, but saturates with a maximum of 28 MA/s.

Wei Y N, PPCF 2020

C. Impact of RMP on the MGI triggered disruption

- When the RMP induced 2/1 LM is larger than a critical width, the MGI shutdown process can be significantly influenced. If the phase difference between the O-point of LM and the MGI value is +90° (or -90°), the penetration depth and the assimilation
- primary RE generation, leading to a 90% reduction of the final formed I_{RF} . Wei Y N, PPCF 2019 0.400 0.401
- Transfer magnetic energy using well $I_{\rm p}$ -coupled coils (ETC)

of impurities can be enhanced (or suppressed) during the pre-TQ phase and result in a faster (or slower) thermal quench.Tong R H, NF 2020

 \checkmark The remaining RE ratio shows an n = 1 dependence on the relative toroidal phase between the pre-seeded 2/1 island and the MGI \checkmark The RE confinement is also found to vary with the width of 2/1 locked island non-monotonically

Argon ▲ Krypton

 N_{ini} (10²¹)

14 15

5. Turbulence and Transport Study

A. Observation of non-local effects in ion transport channel

B. Electron thermal transport with ECRH

• the electron thermal diffusivity χ_e increases almost linearly with the ECRH

C. Theoretical study on the turbulence

(Wang L, P7-1170, Fri. 8:30)

Intrinsic current driven by EM turbulence in pedestal Mean parallel current equation He W, PPCF 2019 $\frac{\partial \langle J_{\parallel} \rangle}{\partial t} + \nabla \cdot \langle \delta \boldsymbol{v}_{E \times B, r} \delta J_{\parallel} \rangle - \nabla \cdot \langle \frac{e}{m_{e}} \delta \boldsymbol{b}_{r} \delta P_{\parallel} \rangle$ $= -\frac{e^2}{m_e} \langle \widehat{\boldsymbol{b}} \cdot \nabla \delta \phi \delta n_e \rangle - \frac{e^2}{cm_e} \langle \frac{\partial \delta A_{\parallel}}{\partial t} \delta n_e \rangle$ ng for the ratio of the intrinsic current to the BS current:

6. Outlook

In the following two years, detailed researches with those newly developed diagnostics and auxiliary systems, e.g. ECE-imaging, VUV spectrometer, and Doppler reflectometry, will be beneficial the study of MHD activities, for turbulence and transport.

The plasma operation with ECRH or

- Turbulent flux (source) driven: $\frac{J_{turb}^{\Gamma}}{J_{BS}} \propto \frac{T_e^{3/4}T_i}{n_e}$; $\frac{J_{turb}^{S}}{J_{BS}} = \propto \frac{T_eT_i}{n_e}$
- ✓ Electrostatic contribution is strongly cancelled by the EM effects
- Combined effects of RMP E_r on drift loss of fast ions in pedestal
- ✓ Non-asymmetric perturbed field results in net radial drift
- \checkmark Strong E_r in pedestal significantly reduces the toroidal precession frequency of deeply trapped FIs \rightarrow key mechanism for the drift loss
- \checkmark The loss time of deeply FIs (tens of μ s) could be much smaller than the slowdown time (tens of ms) in DIII-D pedestal \rightarrow drift loss is an important mechanism for the loss [Huang H T, PST 2020] of deeply Fls.

poloidal divertor configuration will become more mature and it will inspire further researches on plasma heating, current drive, MHD and disruption control, boundary physics, etc.

This work is supported by the National MCF Energy R&D Program of China (Contract No. 2018YFE0309100, 2018YFE0310300), the National Key R&D Program of China (No. 2017YFE0302000) and the National Natural Science Foundation of China (Nos. 11675059, 11905078, 12075096, 12047526 and 51821005).

E-mail: wangnc@hust.edu.cn yunfeng_liang@hust.edu.cn

28th IAEA Fusion Energy Conference 2020 10 - 15 May, 2021, Virtual Event

plasma

as

