

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

[OV/4-5Rb] Recent NSTX-U theory, modeling and analysis results

Walter Guttenfelder for the NSTX-U team IAEA Fusion Energy Conference 2020 Virtual May 10-15, 2021

NSTX-U Mission: Advance low-A physics basis for configuration optimization, support ITER & critical fusion development needs

- Key objectives of NSTX-U research program:
 - Extend confinement and stability physics basis at low-A and high beta to lower collisionality relevant to burning plasma regimes
 - Develop operation at large bootstrap fraction and advance the physics basis required for non-inductive, high-performance and low-disruptivity operation of steady-state compact fusion devices
 - Develop and evaluate conventional and innovative power and particle handling techniques to optimize plasma exhaust in high performance scenarios
 - Support additional critical fusion science and technology development needs (e.g., ITER) utilizing the unique regimes accessible in NSTX-U

NSTX-U targeting major performance increase to explore new physics regimes

2. Tangential 2nd Neutral Beam **1. New Central Magnet** 2× toroidal field (0.5 \rightarrow 1T) 2× plasma current (1 \rightarrow 2MA) 5× longer pulse $(1 \rightarrow 5s)$ 2× heating power (5 \rightarrow 10MW for 5s) Tangential NBI $\rightarrow 2 \times \eta_{cd}$ Up to 15 MW NBI + 6 MW RF for 1-2s Up to 10× higher $nT\tau_{F}$ (~MJ plasmas) $4 \times$ divertor heat flux (\rightarrow ITER levels)

Unique regime (high β , low ν_*) Study new transport and stability physics

→ Sustain plasma without transformer

Not yet achieved at high- β_{T_i} low v_* Essential for any future steady-state ST/tokamak

NSTX-U research addresses urgent issues for fusion science, ITER and next-step devices

- ST accesses unique regime of high β_T
 - Fundamental changes in nature of turbulence, MHD stability → Enhanced electromagnetic and super-Alfvénic effects
 - STs can more easily measure electron-scale turbulence
 - \rightarrow Important transport channel at all aspect ratio
 - − Neutral beam fast-ions in present STs mimic DT α populations → Study burning plasma science
- Expanded parameter space crucial for model validation
- If physics results favorable, STs could provide more economical fusion development & energy systems
 - Potentially reduced magnet and device size and cost

J.E. Menard, TECH/2-4 (FEC2021)

Electromagnetic turbulence

ITER

Pilot Plant

Significant progress made in analysis, theory and modeling in multiple areas addressing NSTX-U Mission

- Core MHD stability
- Energetic particle physics
- Transport and pedestal structure
- Boundary and divertor
- RF heating
- Scenarios and control

<u>Core Stability</u>: kink (n=1) + tearing (2/1) calculations identify stable (β_N , q_{95}) operating space

- Global kink and tearing modes often limited performance on NSTX, also cause disruptions
- Resistive DCON developed to identify scenarios stable to external kink (n=1) & NTM (2/1)
 - Benchmarked with MARS, PEST3 [Z. Wang, 2020]
 - − For NTSX-U projection (B_T=1.0 T, I_p=2.0 MA, P_{NBI}=12 MW, q_{min}→1⁺), both stable for $\beta_N \approx 3$, q₉₅=7.5 (regions in red are stable)
 - Can also be applied to optimize ramp-up
- 3D calculations (IPEC, M3D-C1) used to study sensitivity of plasma response & PFC strike-points to coil alignment
 - Tearing & locked-mode onset + PFC field line pitch used to guide engineering alignment tolerances [Ferraro, 2019]
 - Corresponding strike-point splitting & extended footprints contained to high-heat flux PFCs [Munaretto, 2019]

<u>EP</u>: Coupled low-frequency modes modify fast ion transport synergistically</u>

- "Kick" model for energetic particle (EP) transport has been extended to include low-f perturbations M. Podesta (2019), TH/P1-26 (FEC2021)
- Predicted neutron rate deficit (ΔS_n) correlates with amplitude of coupled kink (n=1) + tearing (2/1) modes
 - Important to model phase-coupled, as inferred in experiment; different than sum of randomly-phased modes

 Kinetic module of M3D-C1 recently developed to simulate coupled MHD-EP interactions (C. Liu)

<u>EP</u>: Guiding center simulations (ORBIT) + delta-f formalism predict nonlinear chirping & avalanches due to AEs

- Avalanches often observed in NSTX with super-Alfvénic beams (V_{beam}/V_A>1) → relevant to ITER α's
- Frequency chirping predicted by simulations, consistent with analytic theory based on wave-particle nonlinearity $\delta f = \pm \frac{16\sqrt{2}}{\pi^2 3\sqrt{3}} \gamma_L \sqrt{\gamma_d t}$.
- Avalanche onset requires multiple modes with sufficient resonance overlap, simulations predict threshold behavior

<u>EP</u>: Theory & simulation predict ways to stabilize highfrequency GAE/CAE, hypothesized to influence core T_e

- GAE/CAE observed at high power, correlated to flattening of T_e
 - Possibly due to stochasticized electron orbits ($\chi_{e})$ and/or energy channeling to edge via CAE-KAW mode conversion
- Hybrid MHD-kinetic simulations (HYM) predict sensitivity of GAE/CAE stability with beam injection geometry and velocity
- Local analytic theory gives insight on how to stabilize

$$\gamma \propto \int h(\lambda, \mathbf{v}) \left[\left(\frac{\ell \omega_{ci}}{\omega} - \lambda \right) \frac{\partial}{\partial \lambda} + \frac{\mathbf{v}}{2} \frac{\partial}{\partial \mathbf{v}} \right] f_b(\lambda, \mathbf{v}) d^2 \mathbf{v}$$

- Counter-propagating GAE requires perpendicular injection (λ₀~0.5-0.7 in NSTX) → stabilized by more tangential NBI on NSTX-U (λ₀~0)
- Co-propagating GAE predicted with more tangential NBI at low field $(V_0/V_A>4)$ → testable on NSTX-U to further validate theory
- Exp. and simulations for DIII-D suggest GAEs will be unstable in ITER, but much smaller growth rates & amplitudes than NSTX

J. Lestz (2020a,b, 2021); E. Belova, TH/P1-27 (FEC 2021)

<u>EP</u>: Detailed analysis of ion cyclotron emission (ICE) challenges present theories

- ICE being considered as an additional α -particle diagnostic in ITER, measurable via external Mirnov coils
- ICE observed in NSTX(-U) with ω_{ICE} from 1st to 7th Ω_{ci} harmonics, distinct variations identified:
 - 1. ~100 μs bursts (γ/ω~1%)
 - 2. quasi-stationary, strong 3-wave coupling to GAE
 - 3. longer, stronger bursts (γ/ω ~0.06%) with chirping
- ω_{ICE} scales with B (Ω_{ci}), not with density (V_{Alfvén})
- ICE frequency, Ω_{ci}(R)=ω_{ICE}/n, often maps mid-radius (not core or edge), appears correlated with density gradient —
- No correlation between neutron rate and ICE amplitude

<u>Transport</u>: Comprehensive validation of electron-scale (ETG) gyrokinetic simulations using high-k microwave scattering

- Local high-k microwave scattering diagnostic + lower-field on NSTX enable detailed validation of electron-scale ETG turbulence
- Using novel synthetic diagnostic, nonlinear gyrokinetic simulations (GYRO) reproduce electron transport & high-k microwave scattering spectra for <u>moderate-β</u> NSTX H-mode
- Numerous parameter scans (∇n, ∇ T, q, s) used to quantify sensitivity of predicted fluxes and synthetic high-k spectra
 J. Ruiz Ruiz (2019, 2020a, 2020b)
- Global ion-scale simulations (GTS) consistent with negligible ion-scale transport ($\chi_i \approx \chi_{i,NC}$) in this discharge (Ren, 2020)
- Novel pseudolocal SXR tomography concept to measure high-k δT_e developed (X. Chen, 2021)

<u>Transport</u>: MTM reduced transport model qualified with gyrokinetics and validated via predictive modeling

- Significant microtearing mode (MTM) electron thermal transport predicted by gyrokinetics in <u>high- β </u> NSTX H-modes
- Hybrid fluid/kinetic MTM model developed to enable integrated predictive modeling
 - Recovers many linear gyrokinetic scalings ($k_{\theta}\rho_{s}$, β_{e} , a/L_{Te} and ν_{e})
 - $\delta B/B_0$ saturation model (from nonlinear dispersion) recovers some scalings from nonlinear GYRO simulations
- Predicted T_e profiles using MTM model + Multi-Model Model recover experiment for higher v_{*} discharges
 - Overpredicts transport at lower ν_{*} as δB/B₀ saturation model scales too weakly with collisionality; other modes may also contribute
 T. Rafig (2021)
- Empirical χ_e model based on artificial neutral networks also recently developed and being tested (Y.-S. Na)

<u>Transport</u>: Carbon impurity peaking near midradius consistent with neoclassical theory in NSTX database

- Expanded database analysis finds a/L_{n,C} \approx a/L_{nC,NEO} \sim (a/L_{n,D} – 0.5 a/L_{Ti}) at mid-radius

- Deviations further out (r/a=0.65) correlate most with wall conditioning
 - circles = boronization
 - stars = lithium wall conditioning
- Linear CGYRO predicts a mix of unstable modes, unable to account for the difference
 - MTM (Γ_{C} ~0) at high ν_{*}
 - Ballooning modes at low $\nu_{\star},$ but Γ_{C} same direction as NEO

N. Howard, PD/1-1 (FEC 2021)

IAEA-FEC 2020/2021, Guttenfelder, OV/4-5Rb

<u>Pedestal</u>: Kink/peeling and KBM instabilities may enable Enhanced Pedestal H-modes (EPH)

- EPH is an attractive wide-pedestal, ELM-free scenario for optimized core-edge performance
 - H₉₈>1.3 & f_{BS}>0.7 at f_{GW}>0.7
- Increased edge ∇T_i≈∇T_{i,NC} typically accessed via transient reduction in v_{*i} (e.g. low edge density following large ELM)
- Hypothesis: particle transport from edge instabilities "locks-in" new edge profile state
 - Changes in BES fluctuations observed
 - Kink/peeling linearly unstable (resistive MHD: M3D-C1)
 - Profiles broadly at linear KBM threshold (gyrokinetics: CGYRO)
- SOLPS analysis in NSTX typically finds (D_e/χ_e)<0.1 → profile evolution likely dependent on other additional mechanisms predicted unstable (ETG, MTM, TEM)

D. Battaglia (2020)

Resistive MHD (M3D-C1) and gyrokinetic (CGYRO) KBM stability

<u>Pedestal</u>: Resistive effects important for predicting MHD pedestal stability in NSTX H-modes

- Ideal MHD peeling-ballooning (P-B) growth rates in ELMy H-mode, γ_{NSTX,ELMy-H} / (ω_{*i}/2) ≈ 0.1, smaller than that for conventional tokamaks, γ / (ω_{*i}/2) = 1
- Resistive MHD simulations (M3D-C1) predict larger P-B growth rates & change in stability boundary for NSTX ELMy H-modes
 - ELM stability boundary closer to $\gamma_{\text{resistive}}$ / ($\omega_{\star i}/2$) = 2
- Moving towards generalized pedestal structure model including non-ideal MHD + gyrokinetic KBM

A. Kleiner (2021)

<u>Pedestal</u>: Neutral density & ionization measurements enable fueling and pedestal transport studies

- Neutral density and ionization rate inferred via inverting line-integrated 2D D_{α} (ENDD)
- Good agreement with DEGAS 2 over large database of NSTX / NSTX-U discharges
- n_D and ionization profiles narrow following L \rightarrow H, widths remain similar as n_e pedestal grows

Boundary: Numerous turbulence observations challenge L/H, ELM and SOL theory

- 2D gas puff imaging (GPI) enables detailed edge turbulence studies
- L/H: No statistically significant change in average turbulence (V_{pol}) or gradient inside LCFS prior to L→H (S. Zweben, 2021)
- ELM: Several SOL filaments coalesce into a single, circular filament, accelerates away from separatrix until ELM crash (Lampert, 2021)
 - Current filament model (Myra, 2007) consistent with coalescence, circular shape, and poloidal acceleration, does not explain $V_{radial} \sim (r-r_{sep})$
 - Possibility of reconnection contributing to current transport (Ebrahimi, 2017)
- Inter-ELM: wakes observed trailing SOL filaments (Zweben, 2019)
 - Possibly drift-Alfven waves, not observed in earlier seeded blob turbulence simulations (Myra, 2013)
- Upstream (GPI) / divertor target (Li I) correlation: weak correlation measured near separatrix (Scotti, 2020)
 - Supports the role of X-point geometry and collisionality for disconnection of midplane instabilities from divertor target (Myra, 2006)

Boundary: Gyrokinetic simulations are approaching realism needed to simulate SOL dynamics

- XGC1 predictions of SOL λ_q for NSTX-U & ITER deviate from Eich scaling
- Due to emergence of TEM turbulence at large f_{trap} (low-A) and lower v_{*e} → opportunity to validate on NSTX-U

Chang (2021), TH/P4-04 (FEC2021)

- Electromagnetic effects incorporated into full-f gyrokinetic open-field line simulations for first time (GKEYLL)
- Used to model NSTX-like simple helical SOL
 - Does not yet include closed surfaces, shaping or X-point
- Predicts change in upstream gradients and target fluxes for scaled-up heating & fueling source rates (β[↑])

Mandell (2020); Hakim (2021), TH/3-4 (FEC 2021)

Temperature and target heat fluxes predicted by GKEYLL (scaled sources)

Boundary: New modeling developments to evaluate present PFC operational limits & future PFC concepts

- Heat flux Engineering Analysis Toolkit (HEAT) couples physics, CAD, ... to predict 3D heat flux & temp. on new castellated, fishscaled tiles
- Used to evaluate efficacy of strike-point sweeping to extend high power pulse lengths

Predicted 3D distribution of PFC heat fluxes (HEAT)

T. Looby (2021)

- Lithium vapor box (LVB) predicted to reduce target q_{\perp} while maintaining stable detachment
- For NSTX-U LVB concept, SOLPS-ITER predicts upstream n_{Li}/n_e can be minimized (<2%) with sufficient D₂ puffing while maintaining detachment

Additional concepts proposed (Ono, 2020; TECH/P7-11)

IAEA-FEC 2020/2021, Guttenfelder, OV/4-5Rb

RF: 2D simulations used to investigate high harmonic fast wave (HHFW) coupling & SOL losses

E.-H. Kim (2019)

- Significant HHFW power often lost to SOL in NSTX through cavity modes
- 2D full wave code (FW2D) updated to include realistic boundary \rightarrow predicted SOL loss minimized for lower density near antenna ($n_{ant} \sim fast$ wave cutoff)
 - Reduced at higher field (NSTX-U), smaller outer gap (Δ_{SOL})
- Challenge to couple HHFW with NBI fast ions
- 2D full-wave simulations (AORSA, w/o SOL) predict • competition between electron and fast ion absorption
 - Electron damping increases with phasing / toroidal wave number (n_{o}) , T_{e}/T_{i} and B_{T}
- Additional simulations show that a sufficient concentration of H+ minority species could enable new HHFW heating scenarios (without NBI)

N. Bertelli (2019)

Predicted HHFW absorption w/ & w/0 NBI fast ions

(E) Z

-0.2

-0.4

IAEA-FEC 2020/2021, Guttenfelder, OV/4-5Rb

<u>RF</u>: Realistic 3D simulations (Petra-M) applied to study NSTX-U HHFW heating and SOL losses

- Petra-M developed for 3D simulations including SOL
 - 3D CAD for vessel & 12-strap antenna, EFIT for magnetic equilibrium
- Predicts increased SOL loss with lower antenna phasing (lower n_{o})
 - Stronger interaction with SOL plasma, far away from plasma
 - Stronger surface |E|, important for understanding impurity generation & RF sheath effects

<u>Scenarios & Control</u>: Many developments to establish, optimize and control high-performance discharges

- Scenario optimization: Optimizing steady-state scenario and actuator trajectories using ML acceleration integrated predictive modeling
 - Automated approach developed for optimizing scenarios & ramp-up trajectories (Wehner, 2019)
 - Accelerated (days → seconds) through reduced models & machine learning for NBI (Ilhan, 2019; Boyer, 2019) and electron transport (Boyer, 2021)

M.D. Boyer, EX/P7-5 (FEC 2021)

- Realtime (RT) control developments:
 - Physics-based closed-loop RT control algorithm of snowflake divertor (Vail, 2019)
 - Safety factor control algorithm (Ilhan, 2019), tested using improved TRANSP closed-loop control modeling (Boyer, 2020)
 - Scalable framework for RT Thomson scattering (<17ms latency) using dedicated server & parallel analysis (Laggner, 2019)
- Startup: Semi-empirical model for designing inductive startup scenarios developed (Battaglia, 2019) → used to help achieve MAST-U first plasma

NSTX-U Recovery Project in construction & installation phase

- Magnet fabrication is complete; strong progress in CS casing, PFCs, passive plates
- Due to COVID delays, early start date now August 2022

S. Gerhardt, TECH/P3-17

Summary: NSTX-U research addresses urgent issues for fusion science, ITER and next-step devices

- Advances in core transport validation and model development
- Advances in modeling fast ion transport and energetic particle stability
- Expanded understanding of transport and stability mechanisms setting pedestal structure
- Boundary studies addressing SOL turbulence and PFC modeling
- 2D and 3D RF modeling of HHFW coupling and SOL losses
- Advances in scenario optimization using machine-learning accelerated integrated predictive modeling and in real time control algorithms

