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In the US there are three major approaches to achieving
ignition and high yield through inertial fusion

Laser indirect-drive Laser direct-drive Magnetic direct-drive




In x-ray and laser-drive we use spherical compression to
achieve the densities and temperatures needed for ignition
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In practice a variety of 3D effects can degrade the efficiency
of the implosion from the ideal 1D
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= High-mode mix reduces compressibility of the DT shell
=  Low-mode asymmetry reduces the efficiency of converting shell kinetic energy

to internal energy
= Ablator mix in hotspot increases radiation losses



Progress in ignition experiments on the NIF
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We can examine proximity to ignition in terms of a
Generalized Lawson Criterion (GLC)

Alpha particle heating rate > hotspot energy loss rate

gq dYy/dt > 3PV [T
dYn/dt = %n2<0-v)DTV

ov
S pe! TZDT £a/24 > 1
(oV)pr
=  P1S(T)ey/24 > 1 S(T) =0
GLC = Pt (T) = 24
~ Plign tignt ) = S(T)

A convenient form of Pt is (P1)3 o P3R3 o« PZ.E}

R. Betti, Phys. Plasmas 17, 058102 (2010)



Ignition boundary (Y,,,,~30x) is quite well defined in
hotspot pressure-energy space
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= 2D simulations spanning a

large range of implosion
conditions (velocity,
adiabat, scale, asymmetry)
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Title and text and more text
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Title and text and more text
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For a more accurate assessment of proximity we can recast
the GLC in terms of measureable quantities

PT/PTIgn ~ 1.67E-7Y, 315(pR)go?c6/M Yamp = = f(GLC)
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GLC and Yield amplification
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Yield
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The current implosions still suffer from some significant
degradation mechanisms

= |n 1D the implosions are predicted to ignite (~1 MJ yields)

= Experimental data show that implosion performance is being affected by at least
3 major factors: (i) asymmetry, (ii) hotspot mix, and (iii) reduced compression
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Degradation mechanism

= Two independent diagnostics have
revealed a mode-1 asymmetry at
stagnation which varies shot-to-shot

= We've discovered the two biggest
sources: <1% variations in radiation
flux due to laser power imbalance, and
<1% variations in capsule thickness

Mitigation
= Improvements in laser power balance,

and improved metrology of capsule
thickness variations

D T. Casey, PRL 126, 025002 (2021)
H. G. Rinderknecht, PRL 124, 145002 (2020)
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Degradation mechanism

= Hotspot mix can be seeded by
engineering features, such as the
capsule fill-tube, or tent support, or
by capsule imperfections

= QObserved as bright features in x-ray
imaging,and through spectroscopy

Mitigation
= Narrow fill-tubes, alternate capsule
supports, higher quality capsules

A. Pak, PRL 124, 145001 (2020)
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Degradation mechanism

= Measured fuel areal densities are
consistently 10-25% lower than
simulation predictions

= Aleading hypothesis is high-mode
mix at the fuel-ablator interface,
supported by recent experiments

77.2keV radiograph Material Density

‘ -

Ablator

35ps gate time Mitigation
10pm resolution = Modified capsule designs with more
2.2eV bandwidth stable fuel-ablator interface

G. Hall, C. Weber (APS DPP 2020)
D. S. Clark, Phys. Plasmas 26, 050601 (2019)



There are several path forwards for closing the gap to the
ignition boundary
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= Reducing 3D perturbations may
enable driving implosions at higher
velocity, increasing 1D margin

Increasing implosion scale (energy)

= |ncrease capsule size with fixed NIF
ek laser energy through more efficient
500 7 hohlraum designs
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