Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

Thomas Sunn Pedersen, for the W7-X Team
Wendelstein 7-X

Located in Greifswald, Germany.
In preliminary operation three times in the time period 2015-2018
Goal: To experimentally verify the reactor-relevance of optimized stellarators

Major radius: R=5.5 m, minor radius: a=0.5 m
Plasma volume: 30 m³
Superconducting coils (NbTi), B=2.5 T on axis
Magnetic field topology optimized for
(among other things):
Low neoclassical losses
Stable plasmas up to <\(\beta\)>=5%
A stable and efficient plasma exhaust solution using the island divertor concept
Quasi-steady-state operation will start in 2022
(Up to 18 GJ eg. 30 minutes at 10 MW ECRH)
Overview

• Experimental evidence of successful reduction of neoclassical losses
• The role of turbulence and turbulence suppression
• Experimental demonstration of robust, steady-state, complete divertor detachment with efficient particle exhaust
• Outlook: Near-term upgrades and what they might help us achieve
High-performance discharges give proof of NC optimization

Given the measured density and temperature profiles, the neoclassical transport can be calculated with high confidence

- Shown here: Pellet-fueled discharge with central ECRH heating 4.5 MW and $\tau_E = 0.23$ s

- Most of the transport is due to turbulence (about 70% at mid-radius – even more at other radii).
Comparison to other magnetic configurations

- We can calculate the equivalent neoclassical losses in less optimized configurations
 - Assume same density and temperature profiles and, for other devices, similar V_p and B-field
 - Result: much higher neoclassical losses, often larger than applied heating power

Proves efficacy of neoclassical optimization of W7-X.

What about the turbulence then?

- One important feature of the W7-X optimization: TEM’s rather benign
 - Trapped particles reside in regions of relatively good curvature.
 - The addition of a density gradient can be stabilizing.
 - Results hold also for nonlinear simulations [1]

[1] Xanthopoulos, Bozhenkov, Beurskens et al, PRL 2020, and Beurskens, this conference

Growth rate vs density and temperature gradients
Proll, Helander, Connor and Plunk, PRL 2012
Helander et al, NF 2015
Alcuson, Xanthopoulos et al, PPCF 2020
Most plasmas are strongly dominated by turbulent losses

- Most discharges have strong (ITG) turbulence and low ion temperatures; confinement times similar to tokamak L-mode
 - See also M. Beurskens et al, this conference

- Pellet fueling appears to be key to higher performance (lower turbulent transport); confinement times similar to tokamak H-mode
Why do most discharges end up with lower performance?

- Vicious cycle starts with source terms, is perpetuated by subtleties of ITG stability

Edge particle source (gas puffing)

Electrons heated by ECRH in core

Ions heated by collisions with electrons \(n \approx (T_e - T_i)/T_e \)

- \(n_e \) profile flat
- \(T_e \) profile peaked
- \(T_e/T_i = 1 + x \)

ITG leads to:
- Increased particle diffusion
- Increased ion thermal losses

If \(T_e/T_i \) increases

\(a/L_n << a/L_T \): profiles outside “stability valley”

Stronger ITG drive
Starting a virtuous cycle with a central particle source

- Central particle source can allow the plasma to hang on to a virtuous cycle

Central particle source (e.g., pellet fueling)

- Electrons heated by ECRH in core
- Ions heated by collisions with electrons
 \(\sim n(T_e - T_i) / T_e^{1.5} \)

- \(n_e \) profile peaked
- \(T_e \) profile peaked
- \(T_e / T_i = 1 + x \)

- ITG weak: Low particle diffusion
 Low ion thermal losses

- \(T_e / T_i \sim 1 \)
 ITG turbulence not further destabilized

- \(a/L_n \sim a/L_T \) inside “stability valley”
 Weaker ITG drive

ITG turbulence not further destabilized

09.04.21
But the virtuous cycle has a dark side, and the vicious cycle has a bright side

- During turbulent phases, the impurity confinement is very low, of order 100 ms
- During turbulence-suppressed phases, impurity particle confinement is dramatically increased
- Impurity accumulation is clearly seen [1]
- New frontier in stellarator optimization: Optimization of turbulent transport
 But not necessarily to zero!
- The enhanced particle transport in ITG turbulence may also be advantageous for isotope mixing in a D-T reactor [2]

Exhaust concept in W7-X: Island Divertor

Standard Configuration
Edge iota = 1 = 5/5

plasma contour
10 divertor units

vertical target
plasma core
horizontal target
baffle
Island divertor in operation

IR camera view of one uncooled W7-X Test Divertor Unit (TDU)

IR camera image of the divertor
Heat flux patterns well understood

There are some interesting subtleties and details [1-3]

Since the divertor is rated at 10 MW/m2 a wetted areas above 1 m2 will allow steady state operation @ 10 MW

We observe large wetted areas (up to 1.5 m2), even increasing at higher heating power [4]

However, overload of the PFCs could still occur due to a combination of:

- Low plasma density, heating power well above 10 MW,
- Attached operation in high-iota configuration (factor of ~2 lower wetted area)

Can we achieve detachment?

Long, Complete Stable Detachment (>26 s) at W7-X

- Convective heat loads effectively disappear.
- Low and stable impurity content ($Z_{\text{eff}}<2$)
- Drop in stored energy $\lesssim 10\%$ during detachment
- Efficient exhaust: neutral pressure compression factor $p_{\text{div}}/p_{\text{main}} \sim 20\text{-}30$

(Schmitz et al NF 2021)
Divertor particle exhaust approaching steady-state

- Density control was demonstrated in long discharges with minor wall-pumping
- For the next phase, cryopumps will increase pumping speed by factor 4.3
- For more on divertor and SOL results, see
 - M. Jakubowski et al, F. Reimold et al, V. Perseo et al., C.Killer et al., this conference
Overall performance achieved so far (with uncooled divertor)

5 MW ECRH, peaked n_e and T_i-profiles, record $nT_i\tau_E$

5 MW ECRH, 30 s, detachment

2 MW ECRH, 100s

Courtesy of M. Kikuchi
Integration of the actively cooled divertor

High-heat-flux divertor on Wendelstein 7-X

- Steady-state heat flux removal up to 10 MW/m²
- Cryopumps are also being installed – giving >4x higher pumping speed

front view divertor unit

back view divertor unit with cryo pump
Infrastructure: Cryo-supply lines, water piping, etc

- Pipe manifold with thermal insulation
- Pipe manifolds (total 40)
- Divertor main distribution unit (total 5)
In-vessel assembly continues despite COVID-19

Effective countermeasures allowed restart of in-vessel work in July 2020, on track to be completed Dec 2021
18 GJ per plasma pulse corresponds to 2 MW for 9000 sec, 5 MW for 1 hour, 10 MW for 30 minutes, etc.
Major upgrade: Continuous pellet-fueling system

- The pellet system in the previous phase was only capable of short bursts of pellets, and could only sustain density peaking and high performance for brief periods.

- The continuous pellet fueling system should be ready early in the next operation phase.
 Major collaboration led by US partners (ORNL and PPPL), also including NIFS in Japan.

Continuous extrusion of H ice has been achieved at a rate of \(1.2 \times 10^{22}\) atoms/sec (should be adequate).

Much higher pellet speeds expected (x3), adjustable pellet size.
If high-performance can then be sustained...
Near-term extensions of heating systems

- Extension of ECRH facility from 10 to 12 gyrotrons
- Program to upgrade from 1 MW to 1.5 MW per gyrotron
- Doubling NBI power
- Adding ICRH
 - ≤ 1.5 MW (25-38 MHz)
 - 2nd harmonic @ 140 GHz
 - Steady-state (30 minutes)
 - Pulsed (~ 10 sec)
• A number of milestones and results have been achieved already in early operation of W7-X:
 • Proof that the optimization to reduce neoclassical transport is successful
 • First examples of turbulence-suppressed plasmas – qualitative understood
 • Stable, complete divertor detachment, with good exhaust efficiency
 • Good divertor impurity screening and retention
 • Core impurity accumulation seen only in turbulence-suppressed discharges

• Preparations are well underway for steady-state operation with significantly enhanced fueling, pumping, and heating capabilities
 • End of in-vessel installation projected for December 2021
 • First plasma operation with a water-cooled divertor expected for September 2022