

Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

Thomas Sunn Pedersen, for the W7-X Team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Wendelstein 7-X

Located in Greifswald, Germany. In preliminary operation three times in the time period 2015-2018 Goal: To experimentally verify the reactor-relevance of optimized stellarators

Major radius: R=5.5 m, minor radius: a=0.5 m Plasma volume: 30 m³ Superconducting coils (NbTi), B=2.5 T on axis Magnetic field topology optimized for (among other things): Low neoclassical losses Stable plasmas up to $<\beta>=5\%$ A stable and efficient plasma exhaust solution using the island divertor concept Quasi-steady-state operation will start in 2022 (Up to 18 GJ eg. 30 minutes at 10 MW ECRH)

- Experimental evidence of successful reduction of neoclassical losses
- The role of turbulence and turbulence suppression
- Experimental demonstration of robust, steady-state, complete divertor detachment with efficient particle exhaust
- Outlook: Near-term upgrades and what they might help us achieve

High-performance discharges give proof of NC optimization

Given the measured density and temperature profiles, the neoclassical transport can be calculated with high confidence

- Shown here: Pellet-fueled discharge with central ECRH heating 4.5 MW and τ_{E} = 0.23 s
- Most of the transport is due to turbulence (about 70% at mid-radius even more at other radii).

Discharge 20180918.045 at t = 3.35 s. From C. Beidler et al., submitted to Nature

Comparison to other magnetic configurations

- We can calculate the equivalent neoclassical losses in less optimized configurations
 - Assume same density and temperature profiles and, for other devices, similar $V_{\rm p}$ and B-field
 - Result: much higher neoclassical losses, often larger than applied heating power

INEN EEC 2021 (virtu

What about the turbulence then?

- One important feature of the W7-X optimization: TEM's rather benign
 - Trapped particles reside in regions of relatively good curvature.
 - The addition of a density gradient can be stabilizing
 - Results hold also for nonlinear simulations [1]

bad curvature

09.04.21

Growth rate vs density and temperature gradients Proll, Helander, Connor and Plunk, PRL 2012 Helander et al, NF 2015 Alcuson, Xanthopoulos et al, PPCF 2020

Most plasmas are strongly dominated by turbulent losses

- Most discharges have strong (ITG) turbulence and low ion temperatures; confinement times similar to tokamak L-mode
 - See also M. Beurskens et al, this conference
- Pellet fueling appears to be key to higher performance (lower turbulent transport); confinement times similar to tokamak H-mode

Why do most discharges end up with lower performance?

• Vicious cycle starts with source terms, is perpetuated by subtleties of ITG stability

Starting a virtuous cycle with a central particle source

• Central particle source can allow the plasma to hang on to a virtuous cycle

09.04.21

But the virtuous cycle has a dark side, and the vicious cycle has a bright side

- During turbulent phases, the impurity confinement is very low, of order 100 ms
- During turbulence-suppressed phases, impurity particle confinement is dramatically increased
- Impurity accumulation is clearly seen
 [1]
- New frontier in stellarator optimization: Optimization of turbulent transport But not necessarily to zero!
- The enhanced particle transport in ITG turbulence may also be advantageous for isotope mixing in a D-T reactor [2]

[1] A Stechow et al, "Suppression of core turbulence by profile shaping in Wendelstein 7-X", submitted (2021)

Exhaust concept in W7-X: Island Divertor

Island divertor in operation

Power exhaust (during attached operation)

Heat flux patterns well understood

There are some interesting subtleties and details [1-3]

Since the divertor is rated at 10 MW/m² a wetted areas above 1 m² will allow steady state operation @ 10 MW

We observe large wetted areas (up to 1.5 m²), even increasing at higher heating power [4] However, overload of the PFCs could still occur due to a combination of:

Low plasma density, heating power well above 10 MW,

Attached operation in high-iota configuration (factor of ~2 lower wetted area)

Can we achieve detachment?

[1] Y. Gao et al., Nuclear Fusion 60 096012 (2020), [2] K. Hammond et al., PPCF 61 125001 (2019)

[3] V. Perseo et al, Nuclear Fusion (Letter), 59 124003 2019

[4] H. Niemann, P. Drewelow, M. W. Jakubowski, et al: Nuclear Fusion (Letter), 2020

Long, Complete Stable Detachment (>26 s) at W7-X

Wendelstein

IPP

- Convective heat loads effectively disappear.
- Low and stable impurity content (Z_{eff}<2)
- Drop in stored energy ≤ 10% during detachment
- Efficient exhaust: neutral pressure compression factor p_{div}/p_{main}~20-30

14

Divertor particle exhaust approaching steady-state

- Density control was demonstrated in long discharges with minor wall-pumping
- For the next phase, cryopumps will increase pumping speed by factor 4.3
- For more on divertor and SOL results, see
 - M. Jakubowski et al, F. Reimold et al, V. Perseo et al., C.Killer et al., this conference

Overall performance achieved so far (with uncooled divertor)

Courtesy of M. Kikuchi

Integration of the actively cooled divertor

Infrastructure: Cryo-supply lines, water piping, etc

In-vessel assembly continues despite COVID-19

Effective countermeasures allowed restart of in-vessel work in July 2020, on track to be completed Dec 2021

Conservatively extrapolated performance

18 GJ per plasma pulse corresponds to 2 MW for 9000 sec, 5 MW for 1 hour, 10 MW for 30 minutes, etc.

Major upgrade: Continuous pellet-fueling system

- The pellet system in the previous phase was only capable of short bursts of pellets, and could only sustain density peaking and high performance for brief periods
- The continuous pellet fueling system should be ready early in next operation phase Major collaboration led by US partners (ORNL and PPPL), also including NIFS in Japan.

Continuous extrusion of H ice has been achieved at a rate of 1.2x10²² atoms/sec (should be adequate)

Much higher pellet speeds expected (x3), adjustable pellet size

If high-performance can then be sustained...

2021.01.07

Near-term extensions of heating systems

- Extension of ECRH facility from 10 to 12 gyrotrons
- Program to upgrade from 1 MW to 1.5 MW per gyrotron

- A number of milestones and results have been achieved already in early operation of W7-X:
 - Proof that the optimization to reduce neoclassical transport is successful
 - First examples of turbulence-suppressed plasmas qualitative understood
 - Stable, complete divertor detachment, with good exhaust efficiency
 - Good divertor impurity screening and retention
 - Core impurity accumulation seen only in turbulence-suppressed discharges
- Preparations are well underway for steady-state operation with significantly enhanced fueling, pumping, and heating capabilities
 - End of in-vessel installation projected for December 2021
 - First plasma operation with a water-cooled divertor expected for September 2022