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Objective of Deuterium Experiment

1. Realization of high-performance plasmas by confinement improvement
and by the improved heating devices and other facilities
⇒ Extend  the operational region of LHD to the reactor relevant plasmas

2. Exploration of the isotope effect study in plasma confinement
 Isotope effect is long underlying mystery in plasma physics
⇒ The information of isotope effect in helical system will lead to the 

comprehensive understanding on plasma physics
3. Demonstration of the confinement capability of energetic particles (EPs) 

in helical system and exploration of their confinement studies
⇒Perspective understanding on EP physics for burning plasmas will be 

provided for toroidal plasmas
4. Extended studies on Plasma-Wall Interactions (PWI) and tritium 

retention studies 
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LHD (Large Helical Device)
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March 31st, 1998 1st plasma
March 7th , 2017 Deuterium Experiment

One of the largest superconducting 
machine in the world

Specifications
 Mode numbers :   l/M=2/10
 All superconducting system

helical coils, poloidal coils and bus lines
 Plasma major radius:  3.55-4.1 m
 Plasma minor radius:  ~0.6 m
 Plasma volume:          30 m3

 Toroidal field strength: 3 T
 10 pairs of RMP coils
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Heating System on LHD
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Negative-
NBIPositive-

NBI Heating Systems
 Negative-NBI (tangential)x 3 (180-
190keV), 

H16MW, D8MW

 Positive-NBI (radial) x 2  (40-80keV),  
H12MW, D18MW

 ECH (77GHz x 3, 154GHz x 2, 56GHz)   
5.5MW

 ICH (38.47MHz) x 2  2 MW

Positive-
NBI

Negative-
NBI

Negative-
NBI

ECH
77GHz x2
154GHz x2

ECH
77GHz x1
56GHz x1

ICH x2
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LHD-NBI 
specification 

LHD has been demonstrated the reliable 
operation of Negative-ion based for more 
than 20 years.
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5MW/NBI (H)

It was proved that the specification of ITER-NBI can be fulfilled simultaneously 
using negative-ion source at the real operation for plasma injection.

ITER-NBI LHD-NBI
JH- > 260A/m2 340 A/m2

Ie/IH- <1 0.25

div. 3-7mrad 5mrad

N-NBI improvement for
D-operation
⇒ Tsumori, K. (ID: 763)
N-NBI optics
⇒ Kisaki, M. (ID:734 )
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Extension of high-temperature regime
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From previous FEC:
 The operation regime with the simultaneous high Ti and high Te

was successfully extended.
 It was found;

• The EP driven resistive InterChange mode (EIC) should be
suppressed to avoid the loss of EPs to increase the ion
temperature and can be suppressed by increasing Te.

Expansion in Temp.:
⇒ Takahashi, H. (ID:781)
EIC suppression:
⇒ Ohdachi, S. (ID:800)
EIC effect on EP:
⇒ Ogawa, K. (ID: 688)
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• The ratio of Te/Ti should be kept below 0.75 to keep
better ion thermal confinement property.

⇒ Moderate ECH heating is important in extending the
parameter.
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Isotope Effect for L-mode plasma
• The existence of Mass dependence in addition gyro-Bohm 

nature was confirmed using H, D, He, and their mixture L-
mode dimensionally similar plasmas.

2021/5/10-15 IAEA-FEC 2020 11

𝜏ாோଷ଺଴ே஻ூΩ௜ ∝ 𝑀଴.ଽସ𝜌∗ିଷ.଴ଶ𝜐∗଴.ଵହ𝛽ି଴.ଶଷ

Dimensionless energy confinement time 
scaling with 4 dimensionless parameter, 
i.e., M, *,*, .

Gyro-Bohm nature: 𝜏ாΩ௜ ∝ 𝑀଴𝜌∗ିଷ.

Yamada, H. (ID:718)



The local thermal transport property is also 
investigated for dimensionally similar plasmas

An improvement in e/i for D plasmas is found especially for high collisional 
region of * >0.2.  On the other hand, the difference in i/i is less significant. 
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Isotope effects of the plasmas with internal transport 
barrier (ITB) are investigated defineing an ITB intensity
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Kobayashi, T. (ID: 832)
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• ITB intensity is a measure:
“How much Ti profile deviates from 
the LHD L-mode scaling (𝝌 ∝ 𝑻𝐢)”

• ITB intensity in D is larger than that 
in H when 𝑷𝐢/𝒏ഥ𝐞 > 4 MW/1019 m-3.

• Principal component analysis 
reveals that ITB becomes stronger 
when both 𝑷𝐢/𝒏ഥ𝐞 and 𝑳𝒏𝐞

ି𝟏 are 
simultaneously large.

• Radial electric field shear plays a 
minor role.

ITB
intensity

T. Kobayashi+, Plasma Phys. Control. Fusion 61 
085005 (2019)

T. Kobayashi+, Sci. Rep. 9 15913 (2019)

T. Kobayashi+, this conference (CN-832)



Control of isotope fraction (D/(D+T) ratio) is a crucial issue 
for the control of the fusion power in future reactors.

IAEA-FEC 2020

6

Mixing state
Low frequency peak

Non-mixing state
High frequency peak

GKV Simulation shows
Low frequency peak
for ITG mode 
and
High frequency peak 
for TEM  

Ida, K. (ID: 692)

 Investigation of hydrogen isotopes behavior in their mixture plasmas is important.  
 A theoretical paper by Bourdelle (NF2018) suggests the isotope mixing state appears at 

ITG dominant plasmas and non-mixing state does at TEM dominant plasmas.
⇒ Isotope mixing/non-mixing plasmas are observed in LHD.  
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New improved confinement regime, 
“RMP induced H-mode”, was found in LHD
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 Density was lamped up during the discharge.
 Stable sustainment of the divertor 

detachment is realized by an RMP 
application.
 Significant reduction in Div. flux.
 Prad. reaches ~60% of Pheat.

 The improvement of confinement observed 
at the onset of the detachment and the 
Edge Transport Barrier (ETB) was formed. 

 Further improvement in confinement was 
observed during the detached phase. 
⇒ RMP induced H-mode

Simultaneous achievement of reduced divertor 
heat load and good core confinement

Kobayashi, M. (ID: 837)
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An application of RMP(m/n=1/1) is the key to 
maintain stable divertor detachment.

2021/5/10-15 IAEA-FEC 2020

 The stochastic region Te<~20eV expanded by the RMP enhances the radiation 
by carbon impurities at the peripheral.

 Steep gradient in Lc might play an important role in the stable sustainment of 
the radiative region.

Kobayashi, M. et al.

Kobayashi, M. (ID: 837)



An Improved confinement 
after detachment is observed
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The triggering mechanism of the improved confinement transition is not understood, yet. 
The impurity behavior might play a role at the triggering event. 

 The reduction of an impurity line intensity (CVI) is also observed at the onset 
of the improved confinement

Kobayashi, M. et al.

Kobayashi, M. (ID: 837)



SUMMARY
The extension of high temperature domain significant in the deuterium 

experiment. 
 Ti0=10.6keV&Te0=5.6keV, Ti0=6.8keＶ & Te0=12.7keV achieved, 

simultaneously.
 The suppression of EIC is the key to extend the domain

• The EIC can be suppressed by ECH
 The Te/Ti ratio is better to be kept below 0.75 to obtain good ion confinement.
Moderate ECH is effective both for EIC suppression and for Te increase 

without Ti degradation.
 Isotope effect scaling for L-mode plasmas are expanded for H, D, He 

and their mixture dimensionally similar plasmas.  
Co-existence of Mass dependence in addition gyro-Bohm nature (𝑀଴𝜌∗ିଷ) 

was confirmed:     𝜏ாோଷ଺଴ே஻ூΩ௜ ∝ 𝑀଴.ଽସ𝜌∗ିଷ.଴ଶ𝜐∗଴.ଵହ𝛽ି଴.ଶଷ.
 Local thermal confinement properties are also examined: The e/i

improved for D plasmas, while the difference in i/i is less significant.
 Isotope effect for ITB plasmas is also investigated using ITB intensity.

 Clear isotope effect is found when 𝑷𝐢/𝒏ഥ𝐞 > 4 MW/1019 m-3.
 PCA reveals the ITB intensity is larger when both 𝑷𝐢/𝒏ഥ𝐞 and 𝑳𝒏𝐞

ି𝟏.
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SUMMARY –continued-
Behavior of hydrogen isotopes in their mixture plasma is investigated.

 A theory suggests the mixing state will appear for ITG dominant case, while 
the non-mixing case will appear for TEM dominant case.

Mixing/non-mixing states are observed, experimentally.
• For the mixing state, a low frequency turbulence peaked at ~25kHz observed, 

while a relatively high frequency turbulence peaked at ~80kHz observed for the 
non-mixing state. 

• GKV simulation suggested ITG turbulence appears at low frequency 
range(~10kHz) and TEM turbulence appears at high frequency range (~60kHz).

New improved confinement regime, called RMP induced H-mode, was 
newly found.
 Stable sustainment of divertor detachment was realized by an application of 

RMP (m/n=1/1).
• Prad. reached  ~60% of the NB injection power (PNB) and a significant reduction in divertor 

flux is observed.
• Expansion of low temperature stochastic region by the RMP is the key to realize stable 

divertor detachment. 
Confinement improvement was observed during the detached phase.

• The triggering mechanism of the improvement is not clear, yet.
• Reduction of impurity might affect the improvement.

 A reduction of diverter flux and good core plasma confinement realized, 
simultaneously.  
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