

Advances in the long-pulse steady-state high beta H-mode scenario with active controls of divertor heat and particle fluxes on EAST

by **B. N. Wan** for the EAST team & collaborators

Institute of Plasma Physics, Chinese Academy of Sciences

We acknowledge contributions from domestic and international partners to EAST research program

EAST demonstrated high $\beta_{\rm P}$ long pulse H-mode operation with high $f_{\rm bs}$

 A 60s time scale long-pulse steady-state high β_P H-mode discharge achieved by pure RF heating with the ITER-like tungsten divertor.

Overview of the parameter space of obtained and prospective long pulse high β_p H-mode plasmas

- Extension of steady-state operational regime
- Physics studies to resolve key issues for steady state operation
- Progress in supporting of ITER
- Summary and future Plan

- Extension of steady-state operational regime
- Physics studies to resolve key issues for steady state operation
- Progress in supporting of ITER
- Summary and future Plan

A 60s scale steady-state discharge was achieved

10

8

4

2

0

- Dominant electron heating by ECH &LHW
 - $\beta_p \sim 2.1$, $\beta_N \sim 1.7$, $H_{98} > 1.3$
 - eITB (T_e>T_i), zero torque, low rotation
 - Flat q profile with q(0)>1.0, $f_{bs} \sim f_{LHCD}$
- Good control of impurity
 - Small ELMy, on-axis ECH

Experiments show improved confinement and reduced turbulence when extending to higher β_P

The higher β_p with high energy confinement at high density.

- The electron turbulent energy fluxes decrease with β_p increase.
 - The transport dominated by the trapped electron mode (TEM) due to the electron heating by RF power (Te >>Ti).

Density gradient is a control knob to improve energy confinement

- A clear dependence of H_{98y2} on the density peaking factor was observed.
 - High density gradient can enhance the Shafranov shift stabilizing effect significantly in high β_p regime.

The same trends in various Heating/CD mixtures ---A new pass for Steady-State Tokamak Fusion Reactor

Optimization of fast ion confinement

- Fast-ion pressure decreased at high-density/low beam.
 - Increase density from 4.4 \times 10¹⁹ m⁻³ to 5 \times 10¹⁹ m⁻³ and decrease the beam voltage from 60 to 50 kV

- Improved plasma performance (β_P~2.5 and H_{98y2}>1.1) with reduced fast-ion loss
 - A bootstrap current fraction (f_{BS}) up to 50% with balanced NB injection.

Demonstration of a compatible core and edge integration in high β_p scenarios

- A compatible core and edge integration in high β_p scenarios
 - high confinement $H_{98y2} > 1.2$
 - $\beta_P \sim 2.5 / \beta_N \sim 2.0$, $f_{bs} \sim 50\%$
 - n_e/n_{GW}~0.7, q₉₅~6.7

- The peak heat flux is reduced by ~30% on the tungsten divertor
 - Active impurity seeding through radiative divertor feedback control via radiated power.
 - A mixture of 50% neon and 50% D_2 is applied.

Gong - EX/1-TH/1

Long-pulse Fully Non Inductive with RF only Close to 1GW CFETR Performance Achieved

- Improved confinement (H_{98y2}~1.3)
- ~zero torque with eITB
- Electron heating dominant
- Small ELMs (f_{ELM}~1kHz)
- Good impurity control

Close to 1GW CFETR Performance

- Extension of steady-state operational regime
- Physics studies to resolve key issues for steady state operation
- Progress in supporting of ITER
- Summary and future Plan

Divertor impurity seeding extends the grassy-ELM regime to lower q95

- Stationary grassy ELM regime
 - Low heat flux
 - Strong particle exhaust capability
- Divertor impurity seeding leads to a transition from mixed ELMs to grassy ELMs
 - 20% Neon injected near the outer strike point of the upper divertor.

Extension of the grassy-ELM regime to lower q95 \rightarrow 5

Li, PPCF 62 (2020) 095025

B.N. Wan/IAEA FEC/May 2021

ELM suppression by Neon seeding

- ELM suppression achieved with neon seeding.
 - Edge Coherent Mode (ECM) disappears and replaced by a Broad-Band fluctuation in the pedestal gradient region.

 Existence of a threshold of neon seeding observed for ELM suppression.

B.N. Wan/IAEA FEC/May 262 I

ELM suppression by boron injection

 Suppression of edge localized modes with real-time boron injection using the tungsten divertor is obtained.

- Edge harmonic oscillations appear during B powder injection.
 - Sufficient particle transport to maintain constant density and avoid impurity accumulation in ELM-stable plasmas.

Diallo – EX/4-6 Sun, NF 61 (2021) 014002

ELM suppression by divertor CD4 seeding

- With divertor CD4 seeding, sustained ELM suppression and divertor detachment achieved
 - An n=1 low-frequency mode (<10kHz) near the upper X point.

 Tungsten impurity concentration is significantly reduced when the mode appears, suggesting that the lowfrequency mode enhances the impurity exhaust.

Simulation suggests ELMs can be mitigated by pedestal coherent mode

- The pedestal coherent modes (PCM) is always accompanied with the ELM mitigation and suppression on EAST.
- Simulation by BOUT++ shows pedestal coherent mode (PCM) decreases the ELM size by ~45%.
 - ELM mitigation by PCM is related with the three-wave nonlinear interactions
- PCM leads to the wider mode spectrum
 →stronger mode coupling →lower
 energy loss of ELMs

EAST successfully develop active detachment controllers

Control parameters	Actuator	Divertor Deeding
Total radiation (P _{rad, total})	LFS and divertor neon seeding	FS Fueling
Divertor particle flux (j _{sat})	Divertor neon seeding LFS D2 fueling by SMBI	
Div. electron temperature (T _{et})	Divertor neon/argon seeding	
Div. target temperature (T _{t, peak})	Divertor neon seeding	
Div. electron temperature + X-point radiation (T _{et} + P _{rad, X-point})	Divertor neon seeding	

Wang -EX/7-1

Feedback detachment control via T_{e,div} + P_{rad} in grassy ELM H-mode

- A new detachment feedback control scheme, combining divertor radiation near the X point and target plate Te signals, is demonstrated.
 - Divertor target T_{et} near strike point maintained at 5-8 eV.

Feedback control of H-mode detachment via Divertor-Te

- T_{e,div} control is important for sputtering reduction
- Neon is more compatible with core plasma for $T_{e,div} = 5eV$.
 - Argon seeded detachment reduces confinement slightly.

Development of flowing liquid Li limiters (FLiLis)

- Liquid Li is being studied as an alternative PFM for better handling of particle and heat flux.
 - Four generations of FLiLi have been successfully in EAST.

- D retention increases gradually during FLiLi operation.
 - FLiLi can well solve the problem of the saturation of Li coated wall.

- Extension of steady-state operational regime
- Physics studies to resolve key issues for steady state operation
- Progress in supporting of ITER
- Summary and future Plan

ELM suppression by n=4 RMP in low torque plasmas

- Type-I ELMs are suppressed by n=4 RMP with upper-lower odd coil phasing, but not for the even one.
 - W concentration decreased with RMP
 - Significant density pump-out (20%) happens during ELM suppression, but less drop (5%) in stored energy
- The target plasma is close to ITER type-I ELMy H-mode operational window
 - T_{NBI} = 1.1 N· m (0.9 N·m ITER equivalent torque in EAST)
 - $q_{95} \sim 3.65$, $v_{e,ped}^* \sim 0.5$, $\beta_N \sim 1.4$

Helium plasmas demonstrated under pure RFheating and ITER-like tungsten divertor

- Concentration of helium (C_{He}) in the plasma is confirmed to play a critical role in H-mode operation.
 - higher concentration raises the H-mode threshold power and deteriorates the energy confinement in H-mode.

- ELMs suppression by n=1 RMP is achieved in helium plasma.
 - Strong density pump-out effect during ELMs suppression, but less drop in plasma confinement.

Divertor Detachment Achieved with Density Ramp-Up in He Plasmas

- A clear particle flux rollover occurs with favorable B_T (B×∇B↑), similar as the D plasmas.
- Te at strike point decreases with the density ramping up.
- Higher detachment threshold density in He than D.

W Erosion is more serious in He plasmas

 W erosion rate in He plasmas is more than 3 times that in D plasmas.

- The intra-ELM W sputtering source increases linearly with the ELM frequency.
 - similar to the deuterium plasmas from DIII-D and JET.

- Extension of steady-state operational regime
- Physics studies to resolve key issues for steady state operation
- Progress in supporting of ITER
- Summary and future Plan

EAST augmented capabilities provide flexibility to continue long-pulse H-mode scenario development

- Heating/CD systems upgraded
 - PAM launcher for LHW(2.45GHz)
 - Lower K spectrum for ICRF(N)
 - A new gyrotron for ECRH (1MW)
 - Two co-current NBI systems

To optimize profiles for scenario development and instability control

B.N. Wan/IAEA FEC/May 2021

EAST augmented capabilities provide flexibility to continue long-pulse H-mode scenario development

- Heating/CD systems upgraded
 - PAM launcher for LHW(2.45GHz)
 - Lower K spectrum for ICRF(N)
 - A new gyrotron for ECRH (1MW)
 - Two co-current NBI systems

To increase the steady-state heat exhaust to 10MW/m²

- A new lower water-cooled tungsten divertor installed
 - ³⁄₄ with the monoblock structure
 - 1/4 with the flat-type structure

Summary

- Significant progress has been made in the long-pulse steady-state high β_{P} H-mode scenario
 - A minute time scale H-mode discharge($\beta_P \sim 2.0$, $f_{bs} \sim 50\%$, $H_{98(y2)} > 1.3$)
 - A compatible core and edge integration in high β_p scenarios
- Key advances on the developments of long pulse operation, delivering steady state operation in ITER and CFETR
 - Active controls of radiative divertor, ELM suppression, He plasmas etc.
- A new lower tungsten divertor is installed and the H/CD systems are upgraded for achieving
 - >400s long-pulse H-mode operation with ~50% bootstrap current fraction;
 - Demonstration of power exhaust at ~10 MW power injection for >100s.

