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EAST demonstrated high B, long pulse H-mode
operation with high f,

EAST 90949 Nov-23-2019 15:20 104 _
2.0+ VA - !
I y 1 . DEMO
1.0+ Bp t =y 10° ¥ Tl
N Br 5 4
0.0 ) 2 » soélﬂ-mweCFETR
2.0 H a 1 0 * 5 : .- ......... -. b .. .....
1.4F- - — 98y2 E"i
1.0F I"IJI"IGW g_gg_a:'m‘ 20s H-mode ITER
L JET (Litaudon 02)
VvV, (V) B JT-60U jreayama 01
0.0 ke loop % Dill-D (M::usiami ;;.. s
E 10 EAST LPi411s L mode ) 3
v v v L o EAST LP(100s H moce)
2+ | P ( M W} i | =z KSTAR LP{70s H mode)
LH2
P__(MW) _1 o
L EC 4 10 = -
1072 1077 1’

- Fusion gain (G=H,B,/q,.%)
0 10 20 30 40 50 60

Time(s)
= A 60s time scale long-pulse Overview of the parameter
steady-state high B, H-mode space of obtained and
discharge achieved by pure RF prospective long pulse high
heating with the ITER-like tungsten | B, H-mode plasmas

divertor.
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Outline

= Extension of steady-state operational regime

= Physics studies to resolve key issues for steady
state operation

= Progress in supporting of ITER

< Summary and future Plan
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A 60s scale steady-state discharge was achieved

EAST 90949 Nov-23-2019 15:20
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Experiments show improved confinement and
reduced turbulence when extending to higher B,
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= The higher B, with high energy 00520 i <065
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= The electron turbulent energy "y
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— The transport dominated by the 0.3 N
trapped electron mode (TEM) due Ralb )
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Density gradient is a control knob to improve
energy confinement

1.5 T
= A clear dependence of Hgg,, .
. ; ——
on the density peaking factor g L T
was observed. = e '
— High density gradient can =
enhance the Shafranov shift O 0 hit 8 s YOS € prT
stabilizing effect significantly H&OD actuators:
. . . ®LH WMLHLECYLH+NB 4 LH+EC+NB
in high g, regime. 0.0L - - - )

Peaking factor n.

The same trends in various Heating/CD mixtures

---A new pass for Steady-State Tokamak Fusion Reactor
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Optimization of fast ion confinement

= Fast-ion pressure decreased at P = St roter o o)
. . ™
high-density/low beam. .
— Increase density from 4.4 x 1019 m=3 < " AN
B ot \q_//l/\ N
to 5 X 10 m~3 and decrease the 0zf AN
beam voltage from 60 to 50 kV \\
370187 80339
e Improved plasma performance , %o
reduced fast-ion loss N

— A bootstrap current fraction (fz) Up  os néfné .

to 50% with balanced NB injection. gg c‘;f_: . : —
02 e o o
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Demonstration of a compatible core and edge
integration in high B, scenarios

EAST SN 94437

3
B,
= A compatible core and edge fm
integration in high B, scenarios .
- high confinement Hgg,, >1.2 :Z}M\wﬁ% H:w::rz)\_i
— Bp~2.5/By~2.0, f,,s~50% sy -
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= The peak heat flux is reduced by ~30% on the tungsten

divertor

— Active impurity seeding through radiative divertor feedback
control via radiated power.

— A mixture of 50% neon and 50% D, is applied.
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Long-pulse Fully Non Inductive with RF only Close to
1GW CFETR Performance Achieved

* Improved confinement (Hgg,,~1.3)

~zero torgque with elTB

Electron heating dominant
Good impurity control (R onlyy”

(RF¥NBI)
R
L (SS)
Close to 1GW CFETR f
Performance
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Outline

e Extension of steady-state operational regime

= Physics studies to resolve key issues for steady
state operation

e Progress in supporting of ITER

< Summary and future Plan
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Divertor impurity seeding extends the grassy-ELM
regime to lower g95

= Stationary grassy ELM regime 157
1+ B ~15
— Low heat flux P
— Strong particle exhaust capability @;u,zo;eo
2t \_,t;
= Divertor impurity seeding leads o~ : : .
to a transition from mixed ELMs . time(s)
to grassy ELMs 13(3.3-3.32s | ' 372 3.74s | |5:35-537s

| -
— 20% Neon injected near the outer | \\ \ |’* ”” hu I\l\
strike point of the upper divertor. | \‘MM' I Wﬂ ” ”J\ il JH
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[ Extension of the grassy-ELM regime to lower q95—5 }
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ELM suppression by Neon seeding

= ELM suppression achieved with
neon seeding.

— Edge Coherent Mode (ECM)
disappears and replaced by a Broad-
Band fluctuation in the pedestal
gradient region.

= Existence of a threshold of neon
seeding observed for ELM
suppression.
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ELM suppression by boron injection

EAST Shot :
= Suppression of edge localized modes s “
with real-time boron injection using O o
. . . et G egsonl '[?."."‘. N i I {
the tungsten divertor is obtained. e . -

(b}

Tir;'le[s]

03l @ s —wr 1« Edge harmonic oscillations appear
3 R -l T during B powder injection.
— .2
g — Sufficient particle transport to maintain
£ 01 constant density and avoid impurity

0 ; : : accumulation in ELM-stable plasmas.
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ELM suppression by divertor CD4 seeding

EAST Shot: #91653
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(b) | | ELM suppression

= With divertor CD4 seeding, sustained
ELM suppression and divertor
detachment achieved

— An n=1 low-frequency mode (<10kHz)
near the upper X point.
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= Tungsten impurity concentration is
significantly reduced when the mode
appears, suggesting that the low-
frequency mode enhances the impurity
exhaust.
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Simulation suggests ELMs can be mitigated by
pedestal coherent mode

e The pedestal coherent modes (PCM) is
always accompanied with the ELM
mitigation and suppression on EAST.
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= Simulation by BOUT++ shows pedestal
coherent mode (PCM) decreases the
ELM size by ~45%.

— ELM mitigation by PCM is related with the  “[®
three-wave nonlinear interactions 20
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= PCM leads to the wider mode spectrum
—stronger mode coupling —lower
energy loss of ELMs
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EAST successfully develop active detachment
controllers

Control parameters Actuator _ _
Divertor Deeding

Total radiation LFS and divertor neon

(Prad, total) Seeding

Divertor particle flux Divertor neon seeding

(Jsat) LFS D2 fueling by SMBI

Div. electron temperature  Divertor neon/argon aiiS Fueling

(T seeding sl

Div. target temperature
(Tt, peak)

Div. electron temperature _ _
+ X-point radiation Divertor neon seeding

(Tet + I:)rad, X—point)
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Feedback detachment control via T 4, + P,4q IN
grassy ELM H-mode

< A new detachment feedback control scheme, combining
divertor radiation near the X point and target plate Te
signals, is demonstrated.
— Divertor target T, near strike point maintained at 5-8 eV.
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Feedback control of H-mode detachment via
Divertor-Te

= Te 4y CONtrol is important for sputtering reduction

= Neon is more compatible with core plasma for T, 4, = 5€eV.
— Argon seeded detachment reduces confinement slightly.
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Development of flowing liquid Li limiters (FLILIS)

- Liquid Li is being studied as an o
alternative PFM for better
handling of particle and heat flux. '

— Four generations of FLiLi have
been successfully in EAST.

(b) {*

. . sot ¢ Total puffing
= D retention increases gradually * Total pumping

during FLiLi operation. ! P
— FLiLi can well solve the problem of o 0t
the saturation of Li coated wall. RE——

particles(10%%)
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Outline

Extension of steady-state operational regime

Physics studies to resolve key issues for steady
state operation

Progress in supporting of ITER

Summary and future Plan
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ELM suppression by n=4 RMP in low torque plasmas

# 85920

= Type-l ELMs are suppressed by n=4 ool
RMP with upper-lower odd coil | .
phasing, but not for the even one. Lo (KA

— W concentration decreased with RMP

— Significant density pump-out (20%)
happens during ELM suppression, but
less drop (5%) in stored energy

= The target plasma is close to ITER
type-1 ELMy H-mode operational
window

— Tyg = 1.1 N- m (0.9 N-m ITER equivalent
torque in EAST)

— Qs ~ 3.65, V¥, peg~0.5, By ~ 1.4
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Helium plasmas demonstrated under pure RF-

heating and ITER-like tungsten divertor

= Concentration of helium (C,,.) in the
plasma is confirmed to play a
critical role in H-mode operation.

— higher concentration raises the H-mode
threshold power and deteriorates the
energy confinement in H-mode.

= ELMs suppression by n=1 RMP is
achieved in helium plasma.

— Strong density pump-out effect during
ELMSs suppression, but less drop in
plasma confinement.
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Divertor Detachment Achieved with Density Ramp-

Up in He Plasmas

= A clear patrticle flux rollover occurs with
favorable B; (Bx VB1), similar as the D
plasmas.

= Te at strike point decreases with the
density ramping up.

< Higher detachment threshold density in
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W Erosion is more serious in He plasmas

= W erosion rate in He plasmas is
more than 3 times that in D plasmas.

< The intra-ELM W sputtering source 250

increases linearly with the ELM

frequency.

— similar to the deuterium plasmas
from DIII-D and JET.
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Outline

Extension of steady-state operational regime

Physics studies to resolve key issues for steady
state operation

Progress in supporting of ITER

Summary and future Plan
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EAST augmented capabilities provide flexibility to
continue long-pulse H-mode scenario development

= Heating/CD systems upgraded
— PAM launcher for LHW(2.45GHz)
— Lower K spectrum for ICRF(N)
— A new gyrotron for ECRH (1MW)
— Two co-current NBI systems

To optimize profiles for scenario
development and instability control
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EAST augmented capabilities provide flexibility to
continue long-pulse H-mode scenario development

= Heating/CD systems upgraded
— PAM launcher for LHW(2.45GHz)
— Lower K spectrum for ICRF(N)
— A new gyrotron for ECRH (1MW)
— Two co-current NBI systems

To increase the steady-state
heat exhaust to 10MW/m?

< A new lower water-cooled
tungsten divertor installed

— %4 with the monoblock structure
— Y4 with the flat-type structure

@ B.N. Wan/IAEA FEC/May 2021
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Ssummary

= Significant progress has been made in the long-pulse steady-
state high B, H-mode scenario
— A minute time scale H-mode discharge(pp ~2.0, f,;~50%, Hgg(>1.3)
- A compatible core and edge infegration in high [, scenarios

= Key advances on the developments of long pulse operation,
delivering steady state operation in ITER and CFETR
— Active controls of radiative divertor, ELM suppression, He plasmas etc.

= A new lower tungsten divertor is installed and the H/CD
systems are upgraded for achieving
— >400s long-pulse H-mode operation with ~50% bootstrap current fraction;
— Demonstration of power exhaust at ~10 MW power injection for >100s.

@ B.N. Wan/IAEA FEC/May 2021 30
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