





### Corrosion Evaluation on Structural Materials for CLEAR in Oxygen Controlled Lead-Bismuth Eutectic at 500 °C

### **Presented By ZhiZhong Jiang**

### **Contributed by FDS Team**

Institute of Nuclear Energy Safety Technology (INEST) Chinese Academy of Sciences

www.fds.org.cn

Key Laboratory of Neutronics and Radiation Safety, CAS

IAEA –TM on Structural Materials for HLM FR, 15-17/ 10/2019

- Background
- Experimental Procedures
- Experimental Results
  - Effect of Oxygen Concentrations
  - Long-Term Corrosion Behaviours
  - Anti-corrosion of Si-Contained Steels
- Summary

# **China LEAd-based Reactor (CLEAR)**

### **CLEAR series was proposed by FDS Team**

- **CLEAR-M** : China LEAd-based Mini-Reactor for independent power supply.
- CLEAR-A : Advanced external neutron source driven nuclear energy system for multi-purpose.
- CLEAR-I: China LEAd-based Research Reactor with subcritical and critical dual-mode operation capability for nuclear waste transmutation research.



Lead-based reactor has many attractive features and may play an important role in the future energy supply



### **Key Issues of Material Compatibility in LBE**

#### Liquid metal corrosion (LMC)

- Corrosion thinning: Dissolution or oxidation
- Blocking flow paths: Corrosion products deposition

#### Liquid metal embrittlement (LME)

- Crack initiate both at the surface and interior of some materials :F/M steels are obvious
- Degradation of mechanical properties, such as tensile, creep, fatigue …





#### Corrosion of stainless steels

Mass transfer in Non-Isothermal system





**Conventional crack pattern** 

T91 in LBE

Material compatibility evaluation is important for supporting engineering design and safety analysis report

- Background
- Experimental Procedures
- Experimental Results
  - Effect of Oxygen Concentrations
  - Long-Term Corrosion Behaviours
  - Anti-corrosion of Si-Contained Steels
- Summary



### **Corrosion Tests in Static LBE**

#### Objectives

- Effect of oxygen concentrations on corrosion behaviours for F/M (T91)and austenitic steels (15-15Ti).
- Screening the new anti-corrosion materials.

#### Test conditions



Corrosion Device with Oxygen Control



Corrosion sample

| Parameters              |                                                         |  |
|-------------------------|---------------------------------------------------------|--|
| Temperature (℃)         | 500 or 550                                              |  |
| Flow rate (m/s)         | static                                                  |  |
| Time (h)                | 2000                                                    |  |
| Oxygen content<br>(wt%) | ~10 <sup>-6</sup> /~10 <sup>-7</sup> /~10 <sup>-8</sup> |  |



# **Long-term Corrosion Tests in Flowing LBE**

#### Objectives

- Obtaining corrosion data of candidate structural materials for CLEAR-I.
- Assessment of corrosion properties for CLAM and other materials.

#### Test conditions



KYLII-II-M loop



Rod



| ٦ | ube |
|---|-----|
|   |     |

Corrosion sample

| Parameters           |                   |  |
|----------------------|-------------------|--|
| Temperature (°C)     | 500               |  |
| Flow rate (m/s)      | 1                 |  |
| Time (h)             | 8000              |  |
| Oxygen content (wt%) | ~10 <sup>-6</sup> |  |

- Background
- Experimental Procedures
- Experimental Results
  - Effect of Oxygen Concentrations
  - Long-Term Corrosion Behaviours
  - Anti-corrosion of Si-Contained Steels
- Summary

### **Corrosion Products of F/M Steels (T91)**



Shujian Tian. 2016. PhD Thesis, University of Science and Technology of China.

### Corrosion Products of Austenitic Steels (15-15Ti)



Shujian Tian. 2016. PhD Thesis, University of Science and Technology of China.

- Background
- Experimental Procedures
- Experimental Results
  - Effect of Oxygen Concentrations
  - Long-Term Corrosion Behaviours
  - Anti-corrosion of Si-Contained Steels
- Summary

### Cross-sectional Morphologies F/M steels

#### **\* T91**





#### **3000h**, 5000h:

- > Oxide Scale: three sub-layer structure , i.e.,  $(Fe_3O_4/(Fe,Cr)_3O_4/IOZ)$ .
- > A few LBE has penetration into  $Fe_3O_4$  sub-layer.
- **8000**h:
  - Oxide Scale: five sub-layer structure, i.e., Fe<sub>3</sub>O<sub>4</sub>/(Fe,Cr)<sub>3</sub>O<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/(Fe,Cr)<sub>3</sub>O<sub>4</sub>/IOZ, may be associated with severe LBE penetration.

5μm

> LBE has infiltrated the T91 substrate near IOZ layer.

### Exfoliation and Regeneration of Oxide Scale F/M steel



- At the initial stage of corrosion, Fe<sub>3</sub>O<sub>4</sub> began to peel; Then, local exfoliation of Fe-Cr spinel and IOZ occurred.
- The exfoliation area of oxide increased with exposure time; The exfoliation area was oxidized again, and new oxide formed.

Tian, S. J., et al. (2016). Materials and Corrosion-Werkstoffe Und Korrosion 67(12): 1274-1285.

### **Cross-sectional Morphologies** Austenitic steels

### **♦15-15Ti**



■ The morphologies are different from those of T91 steel:

- > A thin and dense  $(Fe,Cr)_3O_4$  is formed.
- > the corrosion morphologies for 3000 h, 5000 h and 8000 h are similar.
- Single-layer oxide scale, which is different from that of static corrosion.

# Exfoliation and Regeneration of Oxide Scale Austenitic steel



- At the initial stage of corrosion, local exfoliation of oxide occurred as a result of LBE erosion. However, the corrosion pits could not be seen.
- The exfoliation area of oxide increase with exposure time.
- The exfoliation area was oxidized again, and new oxide Fe<sub>3</sub>O<sub>4</sub> formed.

Tian, S. J., et al. (2016). Materials and Corrosion-Werkstoffe Und Korrosion 67(12): 1274-1285.

- Background
- Experimental Procedures
- Experimental Results
  - Effect of Oxygen Concentrations
  - Long-Term Corrosion Behaviours
  - Anti-corrosion of Si-Contained Steels
- Summary

### **Anti-corrosion of Si-Contained Steels**

Si-contained Austenitic Steel: CLED

Si-contained ODS-CLAM Steel



### China LEad-based reactor fuel claDding: CLED

- High mechanical properties by increasing the Ti/C ratio.
- Good compatibility with LBE by increasing Si content.



Forging Bar



Cladding tube

# **Compatibility with LBE**

CLED (Si: 0.75wt%) compared with commercial 15-15Ti (Si: 0.40 wt%)



CLED shows better corrosion resistance than that of 15-15Ti steel.

# **Anti-corrosion of Si-Contained Steels**

Si-contained Austenitic Steel: CLED

Si-contained ODS-CLAM Steel



# **Si-contained ODS-CLAM Steel**

### Composition : 9Cr-1.5W-0.2V-0.15Ta-0.3Y<sub>2</sub>O<sub>3</sub>-xSi

- Add Si into the CLAM matrix to improve corrosion resistance to LBE
- Add nano-sized oxide particles to Improve mechanical properties

### Preparation Process





### **Elemental Distributions of Corrosion Interface**

#### **ODS-CLAM** without Si:

- A less continuous Cr-enriched oxide ribbon formed between interface of IOZ-matrix.
- ODS-CLAM with 0.3wt% Si:
  - A continuous Cr-enriched oxide ribbon formed at the interface of (Fe,Cr)<sub>3</sub>O<sub>4</sub> layer-matrix.



The addition of Si had great influence on the continuity of Crenriched oxide ribbon.

Liangliang Song. 2018. PhD Thesis, University of Science and Technology of China.

- Background
- Experimental Procedures
- Experimental Results
  - Effect of Oxygen Concentrations
  - Long-Term Corrosion Behaviours
  - Anti-corrosion of Si-Contained Steels
- Summary



### Summary

- A series of compatibility evaluations on structural materials for CLEAR has been carried out in oxygen controlled LBE.
  - The oxygen content in LBE is a key factor in determining the corrosion behaviors of ferritic/martensitic steel and austenitic steel, and also the dominant factor affecting the types and properties of corrosion interface products.
  - The growth kinetics curves of oxide layers for T91, 15-15Ti, CLAM and 316L steels follow a parabolic rule ( $\Delta x^2 = K_p t$ ), and the rate constant for 15-15Ti steel is lowest.
  - Corrosion resistances of Si-containing stainless steel and ODS-CLAM steel has been developed. Compatibility evaluation revealed that the corrosion resistances of the above steels have attained considerable improvement.



# **Thanks for Your Attention!**



Website: www.fds.org.cn E-mail: contact@fds.org.cn