Meeting on Structural Materials for Heavy Liquid Metal Cooled Fast Reactors IAEA Headquarters

Overview of materials research for LFR in China —— R & D of SIMP steel for LFR

Z. G. Wang^{<u>a</u>,1,2}, C. F. Yao^{1,2}, Y. Y. Shan³, T. L. Shen^{1,2}, K. F. Wei^{1,2}, Y. B. Zhu^{1,2}, L. L. Pang^{1,2}

Institute of Modern Physics, CAS
University of Chinese Academy of Sciences
Institute of Metal Research, CAS

2. R & D of SIMP steel

3. Summary & Future works

Z.G. Wang

LFR — One of advanced nuclear energy systems

LFR — advantages:

- Sustainability
- safety
- Economy

Plans ——

.

SVBR-100 and BREST in Russia ELSY, ALFRED, MYRRHA in Europe SSTAR in USA

China —— Small module lead cooled reactors, CiADS (China inititave Accelerator Driven System), ...

CiADS (China initiative Accelerator Driven System)

Oct. 15-17, 2019, VIC, Vienna, AUSTRIA

Z.G. Wang

Materials serve in extreme conditions

	Thermal neutron fission reactor	Fast reactor	Fusion reactor	ADS
Temperature (°C)	300 - 900	350 - 600	300 - 600	300-800
Damage rate (dpa/year)	Up to 2	20	20 - 30	100
Yield of He (appm/dpa)	Up to 10*	~ 0.2	10 - 15	~100

Z.G. Wang

Material — Bottleneck for R&D of LFR

Candidate materials for R&D of LFR

Design parameter	MYRRH A	EFIT	ELFR(ELSY)	ALFRED	BREST-OD-300	SVBR-100 SSTAR		DLFR	JAEA's reference ADS	
Developer	SCK •CEN	EURATOM	EURATOM	EURATOM	NIKIET (Russia)	AKME (Russia)	DOE National laboratories	Westinghouse	JAEA	
Power ,MWt/M We)	110/	400/	1500/600	300/	700/300	280/100	45/20	500/210	800/	
Primary system type	Pool	Pool	Pool	Pool	Pool	Pool	Pool	Pool	Pool	
Fuel	(U-Pu)O ₂ MOX	U-free Pu+MA	(U-Pu)O ₂ MOX	МОХ	(U +Pu+MA)N	UO2, mixed oxide, UPuN	TRU Nitride- N15 enriched	UO ₂	(Pu+MA)N+ZrN	
Coolant	LBE	Pb	Pb	Pb	Pb	Pb LBE Pb Pb		Pb	LBE	
Inlet/outlet (⁰ C)	270/400	400/480	400/480	400/480	420/540	340/490	420/567	390/510	300/410	
Cladding	15- 15Ti/T91	T91	T91, Fe-Al coated	15-15Ti	FM	EP823	Si-enhanced FM steel	D9 coated with Al_2O_3	First :T91 or F82H Second: 316 or JPCA	
Wrapper	T91	T91	T91	15- 15Ti/T91 Aluminize d				D9	First :T91 or F82H Second: 316 or JPCA	
Steam generators	T91	T91	T91	T91/316L	EP302-M			316L/347, possibly coated		
Primary Pump	MAXTHA L,316L	MAXTHAL (Ti ₃ SiC ₂) ₃	MAXTHAL ,316L	Al, Ta coated T91, 316L, MAXTHAL			Nat. circulation	Ti_3SiC_2 coated AISI 400 series		
Reactor Vessel	316L	316L,Al coated	316L	316L				316(L)	First :T91 or F82H Second: 316 or JPCA	

Z.G. Wang

R&D of new structural material (for future ADS)

- Material / LBE compatibility data is limited.
 - Synergetic effect of irradiation/LBE/high-T is lack of study.

Z.G. Wang

Motivation R & D of SIMP steel Summary & Future works

Z.G. Wang

R & D of SIMP steel

Collaboration —

Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS) IMR Institute of Metal Research(IMR), CAS

SIMP steel — — FeCr base martensitic alloy <u>Steel designed by IMP</u>-CAS and <u>IMR</u>-CAS

Supported by Strategic science and technology leading project of Chinese Academy of Sciences

Chemical composition design

Z.G. Wang

IMP

Microstructure design

Tempered martensite:

Excellent thermal stability and good irradiation and corrosion resistance

Smelting & casting

Control: purity, homogeneity, mechanical property

Z.G. Wang

Mechanical properties

The mechanical of SIMP steel is superior to T/P91 in a temperature range from RT to 550 °C

Z.G. Wang

Processing

Tubes/pipes

Φ60mm×10mm Φ60mm×5mm

 Φ 60mmimes1mm

 Φ 5mmimes1mm

Panel / plate

Thin foil

直径 Φ 60mm,厚度~20um的样品

Component

Oct. 15-17, 2019, VIC, Vienna, AUSTRIA

Z.G. Wang

Welding property

Welding property assessment (ASME code)

Mean impact energy at weld: 117J Mean impact energy at HAZ: 81J

SIMP steel shows good weldability and satisfactory post-weld ductility

Liquid LBE corrosion resistance

450°C/600 °C, static, saturation oxygen

Z.G. Wang

Liquid LBE corrosion resistance

600 °C, static, saturation oxygen

Liquid LBE corrosion resistance : SIMP is better than T91

Z.G. Wang

Oxidation resistance in supercritical water

Steel	С	Si	Cr	Mn	W	Та	V	Nb	Ni	Mo	S/ppm	P/ppm
SIMP	0.22	1.22	10.24	0.52	1.45	0.12	0.18	0.01	—	_	43	40
T/P91	0.1	0.26	8.5	0.46		—	0.20	0.04	0.17	0.92	20	30
T/P92	0.1	0.38	8.63	0.42	1.59	—	0.164	0.053	0.15	0.37	10	14
TP347	0.08	0.6	18	1.6	—	—	_	0.8	10	—	<30	<40
304	0.09	<0.03	18	<1.0	_	_	_	0.05	9.7	_	<10	<40

Corrosion Test in SC Water (600°C, 25MPa, 1000h)

Oct. 15-17, 2019, VIC, Vienna, AUSTRIA

Z.G. Wang

IMR

Ion irradiation resistance

Irradiation swelling

Ion irradiation swelling resistance: SIMP > T91 > RAFM*

SIMP steels irradiated at SINQ-PSI, (n/p, ~ 20dpa, 2012-2014) Post Irradiation Examination (PIE) is under way.

Z.G. Wang

Ion irradiation resistance

He-effect

T91/550°C MP/300°C SIMP/550°C

Mean size of helium bubbles, 5x10¹⁶ions/cm², 200 keV He ions

He-bubble size: SIMP < T91

Z.G. Wang

Oct. 15-17, 2019, VIC, Vienna, AUSTRIA

Samples are at the same condition

Irradiation/LM corrosion resistance

HLMIF—Lanzhou, J Nucl Mater 523 (2019) 260

Z.G. Wang

Irradiation/LM corrosion resistance

247MeV Ar, 350°C, LBE-SO, 0.6 m/s, J Nucl Mater 523 (2019) 260

Z.G. Wang

Motivation R & D of SIMP steel Summary & Future works

Z.G. Wang

- 1. SIMP steel, a novel FeCr base martensitic alloy, was developed;
- 2. An industrial scale of 5 tons SIMP steel ingots have been produced.
- 3. A series of tests shown that SIMP steel exhibits good performance under processing, high temperature, liquid metal and ion irradiation.
- 4. The synergistic effect of irradiation and liquid LBE is a key issue for the future development of SIMP steel.

Future works

Database

Evaluations at "true" environment — Synergetic effects (Coolant, DPA, High-T, Dopant, Stress, ...)

Criteria/standard + License + …

Z.G. Wang

Meeting on Structural Materials for Heavy Liquid Metal Cooled Fast Reactors IAEA Headquarters

