A CHARACTERIZATION OF THE FINANCIAL RISK PROFILE OF FAST SMRs

Comparison with SMRs of the PWR type

“Technical Meeting on the Benefits and Challenges of Fast Reactors of the SMR Type”

S. BOARIN (Politecnico di Milano, Italy)
K. TUČEK (European Commission, Joint Research Centre, Petten, The Netherlands)
C. F. SMITH (Naval Postgraduate School, Monterey, USA)

Milan, Sept. 24-27, 2019
Nuclear investment risk

Traditional NPPs
- Invested capital amount
- Pay Back Time (PBT)
- construction delay and cost overruns (size/complexity)
- price-taker technology
- public opinion and public opposition

SMRs
- reduced investment amount (higher €/kWe ?)
- lower PBT and self-financing of fleets
- smaller size of components
 + simplification
 + modularity
 + standardisation
 + factory fabrication
 \[= \text{higher control on construction costs and time}\]
- increased passive safety
 - \(\rightarrow\) better public acceptance
 - \(\rightarrow\) less active components (availability)
Basics of the method

1. “Measurement” of qualitative factors
2. Risk breakdown
3. Expert elicitation
4. Pairwise comparison of Fast SMRs with PWR SMRs

1st level

- **LIFECYCLE PHASE**
 - weight [%]

2nd level

- **RISK FACTORS**
 - score [1-5]

3rd level

- **Performance of Fast vs. PWR SMR**
 - rating [1-7]

[Diagram showing the levels with corresponding factors and scores]
Financial risk break-down

1st level

<table>
<thead>
<tr>
<th>Licensing</th>
<th>Construction</th>
<th>Operation</th>
<th>D&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory activity</td>
<td>Regulatory activity</td>
<td>Regulatory activity</td>
<td>Regulatory activity</td>
</tr>
<tr>
<td>Political support</td>
<td>Political support</td>
<td>Political support</td>
<td>Political support</td>
</tr>
<tr>
<td>Public acceptance</td>
<td>Public acceptance</td>
<td>Public acceptance</td>
<td>Public acceptance</td>
</tr>
<tr>
<td>Supply chain mgt</td>
<td>Plant maneuverability</td>
<td>Fit with cogen. opt.</td>
<td>Project mgt.</td>
</tr>
<tr>
<td>Project mgt</td>
<td>Fit with energy storage</td>
<td>Exposure to fuel price</td>
<td>On site work</td>
</tr>
<tr>
<td>On site work</td>
<td>Unplanned outages freq.</td>
<td>Planned outages freq.</td>
<td>Security</td>
</tr>
<tr>
<td>Factory fabrication</td>
<td>Outages duration</td>
<td>Outages duration</td>
<td>Plant layout pro dismantling</td>
</tr>
</tbody>
</table>

2nd level

- Security
- Security
- Security
- Security
- HLW management
- Special D&D techniques
Financial risk measurement

1st level

<table>
<thead>
<tr>
<th>weight</th>
<th>%</th>
</tr>
</thead>
</table>

2nd level

<table>
<thead>
<tr>
<th>Score</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not at all important</td>
</tr>
<tr>
<td>2</td>
<td>Slightly Important</td>
</tr>
<tr>
<td>3</td>
<td>Important</td>
</tr>
<tr>
<td>4</td>
<td>Fairly Important</td>
</tr>
<tr>
<td>5</td>
<td>Very Important</td>
</tr>
</tbody>
</table>

3rd level

<table>
<thead>
<tr>
<th>Rating</th>
<th>Meaning for Fast SMR</th>
<th>Complementary meaning for PWR SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PWR SMR much better</td>
<td>Fast SMR much worse</td>
</tr>
<tr>
<td>2</td>
<td>PWR SMR fairly better</td>
<td>Fast SMR fairly worse</td>
</tr>
<tr>
<td>3</td>
<td>PWR SMR slightly better</td>
<td>Fast SMR slightly worse</td>
</tr>
<tr>
<td>4</td>
<td>Equal</td>
<td>Equal</td>
</tr>
<tr>
<td>5</td>
<td>Fast SMR slightly better</td>
<td>PWR SMR slightly worse</td>
</tr>
<tr>
<td>6</td>
<td>Fast SMR fairly better</td>
<td>PWR SMR fairly worse</td>
</tr>
<tr>
<td>7</td>
<td>Fast SMR much better</td>
<td>PWR SMR much worse</td>
</tr>
</tbody>
</table>

Expert elicitation
1st level: the risk in lifecycle phases
2nd level: risk factors in LICENSING

LICENSING

4.44
Regulator activity

3.69
Public acceptance

3.75
Political support
2nd level: risk factors in CONSTRUCTION
2nd level: risk factors in OPERATION

- Regulator activity
- Security
- Political support
- Public acceptance
- Plant manoeuvrability
- Fit with cogeneration options
- Fit with energy storage options
- Exposure to the fuel price volatility
- Unplanned outages frequency
- Planned outage frequency
- Outages duration
- Robustness to natural events
2nd level: risk factors in D&D

\begin{itemize}
 \item High level waste management and conditioning
 \item Plant layout to facilitate dismantling
 \item Special dismantling/cutting/decontamination techniques
\end{itemize}

- Security
- On site work
- Project management
- Public acceptance
- Political support
- Regulator activity
3rd level: comparative risk performance in LICENSING
3rd level: comparative risk performance in CONSTRUCTION
3rd level: comparative risk performance in OPERATION

- Regulator activity
- Security
- Political support
- Public acceptance
- Plant maneuverability
- Fit with cogeneration options
- Fit with energy storage options
- Exposure to the fuel price volatility
- Planned outage frequency
- Unplanned outages frequency
- Outages duration

PWR-SMR

Fast-SMR
3rd level: comparative risk performance in D&D

DECOMMISSIONING AND DECONTAMINATION

- Special dismantling/cutting/decontamination techniques
- High level waste management and conditioning
- Plant layout to facilitate dismantling
- Regulator activity
- Political support
- Public acceptance
- Project management
- Security
- On site work

For PWR-SMR and Fast-SMR
Concluding remarks

• **Overall:**
 – Fast SMRs pay for the **novelty of their concept** with higher financial risk perception
 – **PWR SMRs** rely on the experience of PWR technology and keep a competitive advantage in terms of risk perception over Fast SMRs

• **Operation:**
 – Fast SMRs should ensure higher efficiency, flexibility and lower exposure to fuel price, with lower financial risk than PWR technology
 – **higher expected risks of unplanned outages and outage duration** (no track record on operating performance)

• **Construction:** uncertainty on the supply chain planning, scarce knowledge/trust and lack of experience in project management of Fast SMRs.
Concluding remarks

• Information and communication effort, the technology demonstration program to increase the knowledge of Fast SMR performance

• Risk-compensation measures to fill the gap with traditional nuclear plants
 – New business models such as Contract for Difference, Regulated Asset Base (RAB), the Mankala approach implemented at Olkiluoto-3, etc.

• Government backing to support the technology transition and overcome the free market inefficiency in allocating the resources to long-term, strategic projects with high innovation content.