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INTRODUCTION

A Some arctic communities remain disconnected from
national grids and are now powered by diesel generators

b Dlesel fuel can only be shlpped In summer

| Arctic SEALER: deSIgn
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CANADIAN ARCTIC SEALER

S EAL E R Primary coolant pump motor
SwEdish Advanced LEad Reactor e o g ‘ |

Reactor vessel lid

Primary coolant pump

A Under development by LeadCold
Reactors.

Intended for commercial power
production in remote, off -grid
sites 2 u
Smalll lead -cooled reactor Cold leg
19.75 % enriched UO ,-fuel Reactor vessel —————»
3-10 MW electricity R
Core life: 10-30 years :hf'd_,:b'

Reactor vessel: 2.7 x 6.0 m Cold pool
Transportable to/from site

Hot pool

Hot leg

To

Steam generator

o To To To Do o



\
NRG

SPECTRA

A SPECTRA s a thermal-hydraulic system

code developed at NRG.

A Designed to analyze accidents,
including loss-of-coolant accidents
(LOCAS), operational transients, and

other accident scenarios in nuclear (as

well as conventional) power plants.

A Flexible definition of fluid properties and
heat transfer correlations through user

input (no need to modify the code)
A Applicability:
Light Water Reactors,
High Temperature Reactors,
Liquid Metal Fast Reactors,
Molten Salt Reactors,
Chemical reactors,
Conventional power plants

To Too T T To Do

| =SP=SPECTRA Main Program I_
Physical Models | Mathematics I
Thermodynamics Heat Miscellaneous Math 1/0
and Fluid Flow Transfer Procedures Procedures
=SC= =Ml =
1D Solid Heat Math
Conductors Library
=TC= =TF=
M  Tabular
Functions
==
M Control
Functions
=EF=
M External Data
Files

SPECTRA Code Structure
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VALIDATION
SPECTRA - ELSY

ELSY = European Lead -

A

A First SPECTRA application to : T
R |

A

Pb-cooled reactor design

SPECTRA models of primary e R ' = .
and secondary system

Steady -state results :
consistent with ENEA

RELAPS model except for the T~ ! M
fuel surface and centerline

temperatures due to

different assumptions on the

fuel properties and topology
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VALIDATION
SPECTRA - ALFRED

A

ETDR, SPECTRA, Primary System t= -10s 100 b CVﬂ“ﬂ“( it}

ALFRED = Advanced Lead
Fast Reactor European
Demonstrator

Code benchmark on UTOP
ULOFE ULOHS, LOOP

.00 910 - Rencior Vol Wall
A T T
g & & & & & &5 8L 5 |a
E 5 g 5 2 & o3 53 |3

ssssss

(ULOF+ULOHS), SA blockage i

Comparison to RELAP 5, SIM -

777777

LFR, TRACE, SIMMER,
CATHARE e

]
Consistent results. £o S————
Differences related to 3550 7oKTe e
different details in cooling =500 = CAENEA_—= Y
circuits and fuel gap model A0 - o il

Time, s
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VALIDATION
SPECTRA - CIRCE

SPECTRA, CIRCE MERO, NODALIZATION

A Coolantis LBE teu

6.0495

A Benchmark with =

s

RELAP5S results from 3 s

4.250%

independent partners

) 818

HERO-SGBT

Separator

Riser A Benchmark o
demonstrates code =

capabillities to deal with
relevant phenomena
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VALIDATION

, ol
4 10

CFD - CIRCE
| "' ool satification
. . 330 T T T T .1
A Good prediction of e S |
stratification in steady state 2
A Differences in PLOF transient . \\&
A Reasonable results given the = %
experimental uncertainties and " %‘g
unknowns P
A Importance of modelling heat EPS inlet and outlt (emperatures
transfer in inner walls and A R R =
structures U  FPSoutet,exp.|
O ol 1 5 . FpS_ouli sim.|
A Importance of correctly Y L
characterizing heat losses to g T e v |
i E P\ Tl
the environment S |

Zwijsen et al., 2019 R
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VALIDATION

CFD - E-SCAPE

A Blind CCM+ simulations of ESCAPE ( 1:6 scale MYRRHA mock -

up)

Effect of mass flow rate on temperature distribution captured

well

Discre

Visser et al., 2019
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SEALER SAFETY ANALYSIS
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SEALER SAFETY ANALYSES

SPECTRA MODEL

A
A

Complete SEALER model in SPECTRA
Primary system & simplified secondary

system

Reactor vessel, core assemblies with the
fuel rods, primary pumps, steam

generators

Point kinetic model with reactivity
coefficients provided by LeadCold
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331

321

ltem Value
Effective neutron generation time 212 ns
Effective delayed neutron fractiot 682pcm
Doppler constant 259pcm
Fuel axial expansion coefficient -0.33 pcm/K
Grid radial expansiogoefficient -0.52pcm/K

Coolant coefficien{core

-0.35pcm/K
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SEALER SAFETY ANALYSES
UTOP

Max core power
achieved after
~24 sec.

Peak centerline
temperature is
reached after
~100 sec.

Maximum
temperatures
provide sufficient
margin (~ 700 K)
to fuel melt



