FEASIBILITY STUDY OF SMALL SODIUM COOLED FAST EACTORS

H. Hayafune and Y. Chikazawa

Japan Atomic Energy Agency
Previous Studies
JAEA has studied about small sodium cooled reactors in the Feasibility Study.

- Modular Reactor for base load power source
- Remote Place Power Source (<50MWe)
- Multi-purpose Reactor (Hydrogen Production)
Large Scale Reactor
- High economic performance with scale effect
- High R&D risk

Modular Reactor
- High economic performance with standardization & Common use between units
- Low R&D risk

- IRIS, IMR, small BWR

- IFR
Purpose

Energy Resource Sustainability, Low Environmental Burden with MA transmutation

Proposal of a commercialize fast reactor with low R&D risk (major requirement)
- Economical competitiveness with large scale reactors
- Demonstration of reactor technologies
- Demonstration of economical performance including a whole fuel cycle system

Important for Commercialization

- Further cost reduction of modular fast reactor
- Evaluation of construction cost of a first kind of plant (FOAK) (demonstration plant) considering a whole fuel cycle system
Major Design Conditions

- Electric Output: 300MW-electric
- Fuel Type: U-TRU-Zr
- Reactor Type: Loop Type
- Spent Fuel Storage: In-vessel Storage (IVS)
- Main Cooling System: One-Loop Main Cooling System
- Main Pump: Electro Magnetic Pump (EMP)

Potential of Cost Reduction

Simple ex-vessel fuel handling system

Cost Reduction

Technology for one-loop main cooling system

MA transmutation

Low construction cost in the small fuel cycle facility
Core Design

Single Pu enrichment plural Zr content Regions Core

- Output: 714MW (300MW-electric)
- Operation Cycle: 2 years (4 batches)
- Burnup: 80GWd/t
- Outlet Temp.: 550deg-C

Core Diameter: 2.63m Pin Diameter: 8.5mm
Core Height: 1m S/A pitch: 157.2mm

- Inner core fuel S/A 81
- Outer core fuel S/A 162
- S.S. shielding 60
- Zr-H shielding 66
- Primary control rod 7
- Backup control rod 3

Reactor Vessel

L shape piping with high chromium steel*

Compact Rotating Plug with Slit UIS*

IVS with capacity for 4 years storage

*: Same technologies from JSFR

Reactor Cooling System

One-Loop Main Cooling System with Dual EMPs

Annular Linear Induction Pump Experience
44 m³/min: W. Kwant et al., ICONE-5, No. 2553, (1997)

Operation: 2550h
Efficiency: 40%
IHX with Internal EMP

<table>
<thead>
<tr>
<th>Internal EMP</th>
<th>Items</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature</td>
<td>395deg-C</td>
</tr>
<tr>
<td></td>
<td>Flow Rate</td>
<td>255m³/min</td>
</tr>
<tr>
<td></td>
<td>Pump Head</td>
<td>0.4MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IHX</th>
<th>Items</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capacity</td>
<td>714MW</td>
</tr>
<tr>
<td></td>
<td>Tube Outer Diameter</td>
<td>25.4mm</td>
</tr>
<tr>
<td></td>
<td>Tube Thickness</td>
<td>1.1mm</td>
</tr>
<tr>
<td></td>
<td>Tube Length</td>
<td>5m</td>
</tr>
<tr>
<td></td>
<td>Tube Quantity</td>
<td>4412</td>
</tr>
<tr>
<td></td>
<td>Tube Arrangement</td>
<td>Triangle</td>
</tr>
<tr>
<td></td>
<td>Tube Pitch</td>
<td>32mm</td>
</tr>
<tr>
<td></td>
<td>Heat Transfer Area</td>
<td>1700m²</td>
</tr>
<tr>
<td></td>
<td>Material</td>
<td>12Cr</td>
</tr>
</tbody>
</table>

Dual EMPs
Decay Heat Removal System

Two DRACS and one IRACS with Natural Convection

Penetration between Low and High Plenum with Flow Diode (Water Experiment in 2005)
Total Volume $65,100\text{m}^3$ for 300MW-electric
(Reactor Building of MONJU $207,000\text{m}^3$ for 280MW-electric)
Construction Cost Estimation

<table>
<thead>
<tr>
<th>Item</th>
<th>Mass (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor Structure</td>
<td>107</td>
</tr>
<tr>
<td>IHX</td>
<td>125</td>
</tr>
<tr>
<td>Primary Circuit Pump</td>
<td>122</td>
</tr>
<tr>
<td>Primary Circuit Piping</td>
<td>72</td>
</tr>
<tr>
<td>SG</td>
<td>276</td>
</tr>
<tr>
<td>Secondary Circuit Pump</td>
<td>330</td>
</tr>
<tr>
<td>Total</td>
<td>1037</td>
</tr>
</tbody>
</table>

*Except EMP stator 154tonne

FOAK 190% of Target (2,000$/kW, 1USD=100JPY)

NOAK 115%
Economic Competitiveness

Target for Large Scale Reactor in Future Japan 4 cents/kWh

300 MWe SFR-SMR has a potential for economic competitiveness versus large scale plant.
- JNC has studied about small sodium cooled Reactors since FY2001.

Design Condition in the present study

- Electric power 50MW
- Core life time 30y
- Without Refueling

Simple Compact Reactor Vessel
Core design

- Thermal output: 120MWt
- Electric output: 50MWe
- Fuel type: U-Pu-Zr ternary metal
- Outlet temperature: 550°C
- Core life time: 30年
- Burnup reactivity: 1.2%Δk/kk'
- Core height: 1.18m
- Core equivalent diameter: 1.82m
- Average discharge burnup: 74GW/dt

<table>
<thead>
<tr>
<th></th>
<th>Inner</th>
<th>Middle</th>
<th>Outer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr content</td>
<td>10%</td>
<td>10%</td>
<td>6%</td>
</tr>
<tr>
<td>Smear density</td>
<td>70%</td>
<td>79%</td>
<td>85%</td>
</tr>
</tbody>
</table>
Simplified Compact Reactor Vessel

Ordinary Loop Type

Rotating Plug

Subassembly in fuel handling

Sodium level is given by the requirement in fuel handling

In-vessel Fuel Transfer Machine

- Sodium level is restricted only in operating condition
- Rotating plug and in-vessel Fuel Transfer Machine can be removed
Reactor Vessel

- Simplified upper structure without rotating plug
- DHX at cover gas (reduction of RV height)
- Direct subassembly support by RV (removing core barrel)
- Piping with nozzles (reduction of RV diameter)

Diameter 2.8m
Height 13.4m
Total system (1 loop)

- Reactor Vessel
- IHX with double EMP
- Helical coil SG
- EMP for 2nd circuit

Sector of Fast Reactor and Advanced Reactor Research and Development
Mass Evaluation

<table>
<thead>
<tr>
<th>Item</th>
<th>Previous Pool type design</th>
<th>Loop design</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV</td>
<td>70</td>
<td>38.5</td>
</tr>
<tr>
<td>In-vessel Structures</td>
<td>65</td>
<td>28</td>
</tr>
<tr>
<td>Roof Deck</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>GV</td>
<td>40</td>
<td>20.5</td>
</tr>
<tr>
<td>IHX</td>
<td>90</td>
<td>41.5</td>
</tr>
<tr>
<td>Primary Circuit Pump</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>Primary Circuit Piping</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>SG</td>
<td>90</td>
<td>97</td>
</tr>
<tr>
<td>Secondary Circuit Pump</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Secondary Circuit Pump</td>
<td>7</td>
<td>7.1</td>
</tr>
<tr>
<td>Total</td>
<td>477</td>
<td>308.6</td>
</tr>
</tbody>
</table>

Simplified Loop type design has a advantage in construction cost.
Present Study in JAEA
Innovative Energy System around 2050 and beyond

Innovation objectives:
- Co-existence with renewable energy
- 80% CO2 reduction in 2050

Current

Innovative energy system

- No fossil fuel use
- LWR → SFR/HTGR
- Load following to VRE

https://www.fepc.or.jp/index.html

https://www.enecho.meti.go.jp/
<table>
<thead>
<tr>
<th>JAEA's Nuclear Innovation Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Significant cost reduction</td>
</tr>
<tr>
<td>✓ Reduce manufacturing cost</td>
</tr>
<tr>
<td>✓ Raise fuel performance w/ extended burnup</td>
</tr>
<tr>
<td>✓ Raising thermal efficiency to 50-60%</td>
</tr>
<tr>
<td>✓ Standardization and non-nuclearization</td>
</tr>
<tr>
<td>2) Fuel cycle synergy</td>
</tr>
<tr>
<td>✓ SFR + HTGR closed fuel cycle - reduce or eliminate U use</td>
</tr>
<tr>
<td>✓ Supply sufficient Pu required for zero emission grid</td>
</tr>
<tr>
<td>✓ MA burning, etc.</td>
</tr>
<tr>
<td>3) Zero emission grid</td>
</tr>
<tr>
<td>✓ Capability to follow variable renewables while operating reactor at baseload</td>
</tr>
<tr>
<td>✓ Capability to produce hydrogen and heat at low demand/price of electricity</td>
</tr>
<tr>
<td>✓ Smart grid system integrating requirements of environment, market, safety, maintenance, grid resilience, regulation, etc.</td>
</tr>
<tr>
<td>4) Significant nuclear safety improvement</td>
</tr>
<tr>
<td>✓ Order of magnitude reduction or elimination of risk of core melt, radioactive material release, combustion chemicals</td>
</tr>
</tbody>
</table>

- Set vision goals
- Evaluate R&D needs
- Implement R&D activities
Innovative Nuclear System for Grid

HTGR roles:
- Process heat and hydrogen supply
- Load following
- GF/LFC/EDC power adjustment

SFR roles:
- Pu burning and fuel supply
- Pu cleanup
- MA burning
- Hydrogen production for electricity storage
- BL and load follow
- EDC power adjustment

LWR role:
- Baseload (BL) electricity

Sector of Fast Reactor and Advanced Reactor Research and Development
Nuclear production of hydrogen processes

- **Reactor temperature**
 - 950°C (HTGR)
 - 500°C (SFR)
 - 300°C (LWR)

- **Process temperature**
 - 100°C
 - 500°C
 - 800°C

- **Thermal efficiency**
 - 50%
 - 42%
 - 25-30%

- **Processes**
 - Thermal chemical
 - High temperature electrolysis
 - Methane reforming
 - Hybrid cycle
 - Thermal efficiency 42%
 - L-T methane reforming
 - Electrolysis
 - Thermal efficiency 25-30%

Sector of Fast Reactor and Advanced Reactor Research and Development
Zero-emission energy by RE+NU

Japan 9 regional utilities’ average in 2018

Electricity [MW]

0:00 24 hours 24:00

2018/3/24

2018/7/17

Sector
Why SMR?

• Flexible introduction
 – SFR: Pu management flexibility (Pu burning/breeding, and Pu cleanup from LWRs)
 – HTGR: Flexibility of co-existence with renewable energy
 – SMR: Lower investment cost and lower R&D risks

• Safety enhancement
 – SFR: Lower void coefficient for Pu management core
 – HTGR: High passive safety ability with large heat capacity of the core

• Requirement from the society
 – Hydrogen energy...etc.