Stellarators Divertors

[31] The Island Divertor Concept of the Wendelstein 7 Stellarator Line – Concept, Experimental Experience and Up-scaling to Reactor Relevant Size	KOENIG, Ralf
[39] Advantage and disadvantage of the LHD heliotron divertor	KOBAYASHI, Masahiro
[13] Divertor and Exhaust Modelling in the Framework of a Systems Code for a Stellarator Power Plant	WARMER, Felix
[48] Radiative divertor experiments with Ne, N, and Kr seeding in LHD	MUKAI, Kiyofumi
[46] Importance of divertor physics modeling in system design of LHD-type helical reactor	GOTO, Takuya

Discussion session: Stellarator divertor

What is the most critical issues toward helical DEMO?

Particle exhaust:

 LHD: About 50% of fueled particles can be pumped. To be improved in next experiments. EMC3-EIRENE predicts better divertor compression (~1 Pa) in DEMO size divertor
W7-X: "High recycling" divertor provides sufficient pumping efficiency. In next experiments, pumping capability will be increases by a factor of 3 – 4 with cryo-pumps.

Pumping during detachment?

Compatibility with high radiation fraction ~90%, N & Ne seeding.

He exhaust?

Very few experiments in LHD demonstrated He exhaust enhancement with RMP

Impurity control:

Both LHD and W7-X have not been suffered from significant core impurity accumulation so far. LHD: Very low iron density in core (n_{Fe} / n_e < 10⁻³) despite the stainless steel first wall. W7-X: Friction force > thermal force, impurity flow always directed towards divertor plate even in low density.

Screening against high Z impurity? Balance with core impurity transport, especially in long pulse/steady state operation?

Discussion session: Stellarator divertor

What is the most critical issues toward helical DEMO?

Power exhaust:

LHD: Strong non-uniform heat deposition in helical direction (attached phase).

Ne seeding is better to reduce heat load uniformly in toroidal direction.

N seeding gives rise to toroidal modulation of heat load.

 \rightarrow Slow puff rate with long duration can mitigate the toroidal non-uniformity.

Stabilization of detachment is not very successful with impurity seeding.

 \rightarrow Good indication for detachment stability in mixture seeding (Ne + Kr), but very few shot. Needs to be investigated further. RMP can stabilize the detachment. Toroidal modulation in heat load pattern during detachment in H, but not (or reduced) in D plasmas. Isotope effect?

W7-X: Long L_C widens energy channel width (?).

Ne seeding is very successful for stable & complete detachment for long duration (close to 100% radiation).

N seeding works well, can be well feedback controlled on total radiation, radiation distribution, peak target load etc.

High-field side MARFEs have only been a stability problem in W7-AS, but not observed in W7-X

The large island size is a key parameter for the detachment stabilization?

 \rightarrow Optimum island size for impurity screening and neutral compression.

What fraction has to be dissipated in DEMO? (Divertor heat load scaling?) Is the current observation scaled to DEMO? → Mechanism of the stabilization need to be understood. Compatibility with core plasma performance?

Any other issues?