'Divertor Plasma Control' Discussion

Talks covered a number of aspects of ways to improve detachment through control

- Minimize power (peak and total) density at the target
- Minimize effect on the core plasma
 - Confinement
 ✓, impurity levels and radiation
 ✓, stability
 ✓...
- The compression and enrichment of impurities in the divertor X
 - Maximizes divertor radiation and impurity (including He) pumping
- Easier access to detachment at the highest P_{SOL}, lowest separatrix density (n_u) and impurity concentration, C_z. Other quantities?
- What detachment characteristics can be controlled in a reactor ?
- More aspects and applicability to a reactor?

Session Chairman: B. Lipschultz¹

'Divertor Plasma Control' summary

- Detachment onset covered by Guo and Lipschultz
 - Controlling total flux expansion, strike point angle and neutral baffling can minimize (maximize) the density & impurity (P_{SOL}) detachment threshold
 - BxgradB away from the SN divertor is useful in lowering the detachment density threshold
- Detachment core radiation control covered by Bernert
 - N2-seeding allows for fine position control of the detachment-related radiation at and above the x-point; confinement degradation small even though impurity concentration significant.
- Core confinement maximized by divertor baffling
 - Better divertor baffling reduces effects on core confinement likely due to reduced neutrals in core and hotter separatrix?

1 1 1 7 0						
Machine	Sensor	Actuator	Scenario	Comment	Reference	ASDEX Upgrade
AUG	X-point radiator location (AXUV)	N seeding	H-mode, full detachment	First application, ELM- free scenario?	Bernert, to be submitted to NF	Selected topics, not covering all experiments. Missing here: EAST [Wang]
AUG	T _{div} (shunt current)	N or Ar seeding	H-mode, partial detachment	Robust, only estimate of $T_{e,div}$	Kallenbach, PPCF 2010	
AUG	P _{rad,core} & P _{rad,div} (Bolometry)	N & Ar seeding	H-mode, partial detachment	Proof of principle, worked	Kallenbach, NF 2012	
JET	Langmuir probes	N seeding	H-mode, partial detachment	Only for optimised scenarios	Guillemeut, PPCF 2017	
C-Mod	Bolometry/ Thermocouples	N seeding	H-mode, partial detachment	Marginally stable	Goetz, PoP 1999 Brunner, NF 2017	
TCV	CIII front location (MANTIS)	D fueling	L-mode (H-mode tbd)	Optimised for a few scenarios	Ravensbergen, EPS / NF 2019	
DIII-D	Divertor Thomson Scattering	D fueling	L- & H-mode	Combined with multiple sensors → Cliff-edge	Kolemen, JNM 2015; Eldon, NF 2017	
DIII-D	Divertor radiation	N seeding	H-mode, $f_{rad} = 50-80\%$	Variable geometry, unstable if core is influenced	Eldon, JNME 2019	

Discussion topics: Control during detachment

- Control of radiation in detachment
 - Is radiation location the right thing to control?
 - Are there further metrics that need to be simultaneously controlled?
 - What are the relative priorities for characteristics we want to simultaneously control?
 - Are some actuators and measurements 'better' than others
 - Can we address reactor issues with control in today's tokamaks/modelling?
 - E.g. Slow down seeding reaction time?
 - Are there other actuators we should consider controlling during a pulse?
 - P_{SOL}? Divertor neutral pressure? Changes in divertor magnetic topology?
 - What are the positive/negatives of x-pt & above radiation?
 - How is it different than directly injecting a core radiator reducing P_{SOL}? Better or worse?
 - Other topics...

Detachment control for a reactor?

- Sensors, e.g.:
 - SOL n_e & T_e (target, X-Point & separatrix)
 - Incoming power (P_{div})
 - Impurity concentration (neutral gas, divertor plasma, core plasma)
 - Neutral gas pressure
 - Radiation location
- Actuators, e.g.:
 - Neutral gas influx/pellet flux
 - Impurity influx
 - Heating power (fast reaction)
 - Magnetic Geometry

• Controller:

- Available and tested before scenario is applied
- Fine tuning possible afterwards
 - \rightarrow Controller based on modelling results!

• Challenges:

- Requires stable scenario
- Actuators coupled with other control parameters
- Limited diagnostic reliability
 → Redundant measurements
- Time scales of actuators most likely slower than time until melting
 → Buffer needed

Discussion topics – divertor design to control detachment characteristics

- History of divertor design changes to optimize divertor 'performance' in detachment
 - Changes in the divertor structure: horizontal -> vertical divertor
 - More recently variations in magnetic topology ('alternative' divertors)
- Can we be more quantitative and structured in evaluation of the importance of some divertor characteristics vs others?
- Are there more characteristics that need to be optimised specifically for a reactor?
- There has not been an in-depth study of the optimal divertor size?
 - Leg length of each divertor and their relative size
 - How 'closed' (a subjective assessment!) should a divertor be in a reactor where the plasma itself is a barrier for neutrals to escape?
- Why do we ignore impurity compression and enrichment in almost all studies?
- Other topics...