

Power exhaust studies in the Divertor Tokamak Test facility

N. Vianello¹, P. Innocente¹, R. Ambrosino² ¹Consorzio RFX, ² Universitá degli Studi di Napoli 07/11/2019

Acknowledgment: This work is carried out in the frame of the DTT activity. The authors are very grateful to all the colleagues involved in the DTT project for their precious contribution

Introduction

- A new tokamak, named Divertor Tokamak Test (DTT) will be built in Italy
- Its main scientific goal will be to investigate energy and particle exhausts in order to withstand the load expected in fusion power plant (Mazzitelli et al. 2019)
- The budget for the experiment has been approved and secured
- It will be built in Frascati with an estimated construction time of 7 years and an expected operation time of 25 years

$\overrightarrow{\textbf{DTT}} \text{ at a glance}$ $\overrightarrow{\textbf{B}_{t} [\textbf{T]} |_{p} [\textbf{MA]} | \textbf{Vol} [\textbf{m}^{3}] | \textbf{P}_{aux} [\textbf{MVV}] | \textbf{R/a} [\textbf{m/m}] | \textbf{Pulse length} [\textbf{s}]$ $\overrightarrow{\textbf{6}} 5.5 \approx 28 | \textbf{45} | \textbf{2.14/0.65} | \textbf{\sim} 100$

- DTT flexible design to accomodate the best candidate divertor concept by EUROfusion after PEX activities (around 2022-2023)
- Up-down symmetry to allow DN configuration
- The foreseen additional power and power mix must guarantee significant DEMO relevant results

$\widehat{\mathbb{D}} \xrightarrow{\text{DTT at a glance}} B_t [\mathbf{T}] \ \mathbf{I}_p [\mathbf{MA}] \ \mathbf{Vol} [\mathbf{m}^3] \ \mathbf{P}_{aux} [\mathbf{MW}] \ \mathbf{R/a} [\mathbf{m/m}] \ \mathbf{Pulse length} [\mathbf{s}] \\ 6 \ 5.5 \ \approx 28 \ 45 \ 2.14/0.65 \ \sim 100$

n/n_G	0.45
P_{sep}/R	15
$\langle T_e angle$ [keV]	6.1
$\langle n \rangle [10^{20} \mathrm{m}^{-3}]$	1.72
k	1.89
δ	0.46
β_N	1.5
$ u^*$	2.5
ρ^*	2.8

DTT Technology

	TF	CS	PF	In-vessel
Number	18	6	6	6
Туре	Nb3Sn	Nb3Sn	Nb3Sn	Cu

On-going design of additional HTS coil to be inserted into the Central Solenoid (10% flux increase test))

- **Vessel** 2 stainless steel vessel shells of 1.5cm. 2 toroidally discontinuous stabilizing plates of 4cm
- **Divertor** 54 toroidal sectors or cassettes (symmetric wrt equatorial plane). Remote handling compatable

(Albanese et al. 2018; Di Gironimo et al. 2019)

DTT Scenarios

The facility will offer sufficient flexibility to incorporate the best candidate divertor concept even at a later stage of its realization, on the basis of the results of PEX activities. (Ambrosino *et al.* 2019)

DTT Plasma scenarios

- DTT can reach high levels of SOL loading with Demo Relevant $P_{sep}/R \ge 15$ MW/R
- SOL neutral penetration comparable to the one foreseen for DEMO
- Phase I 25 MW (15 MW ECRH, 3 MW ICRH, 7MW NNBI), Phase II 45 MW (20-30 MW ECRH, 3-9 MW ICRH, 7-15 MW NNBI) (Agostinetti et al. 2019; Ceccuzzi et al. 2018; Garavaglia et al. 2018)
- High density (core and pedestal) $n_{e,c} pprox 2 imes 10^{20} m^{-3}$ and a $n_{e,ped} pprox 1.4 imes 10^{20} m^{-3}$

DTT Plasma exhaust studies

• Step ladder approach starting from simple modelling in order to capture the foundamental differences between the various magnetic configurations

DTT Plasma exhaust studies

- Step ladder approach starting from simple modelling in order to capture the foundamental differences between the various magnetic configurations
- Based on relatively large $\lambda_{q,u}pprox 3$ mm kept constant for all the configurations
- SOLEDGE2D-Eirene (Bufferand *et al.* 2013) simulations without drift with the following parameters
 - $\circ~\chi_{\perp}=0.15~{
 m m}^2$ /s and $D_{\perp}=0.352~{
 m m}^2$ /s compatible with $\lambda_{q,u}pprox 3$
 - Tungsten wall and divertor
 - Fixed particle flux from the core $\Gamma_c=0.3\times 10^{22}{\rm s}^{-1}$ and gas-puffing $\Gamma_{puff}=3\times 10^{22}{\rm s}^{-1}$
 - $\circ~{\rm P}_{sep}$ power scan at high density 1 \times 10 $^{20}{\rm m}^{-3}~(n_{sep}/n_G\approx$ 0.25)
 - Two different seeding scan with Ne and Ar at two values of separatrix greenwald fraction $n_{sep}/n_G pprox$ 0.12 and 0.25

All the main configurations have been modeled with ad-hoc designed walls in order to ensure similar grazing angle $\alpha \approx 1.6^{\circ}$.

All the main configurations have been modeled with ad-hoc designed walls in order to ensure similar grazing angle $\alpha \approx 1.6^{\circ}$. They all have similar gas-puffing location, pumping surfaces located in the inclined dome plates in the PFR and seeding location on the dome

• A clear difference exists in term of L_{\parallel} much higher for the SnowFlake configurations and f_x at the target

- A clear difference exists in term of L_{\parallel} much higher for the SnowFlake configurations and f_x at the target
- A first major difference is observed in attached configuration, with larger upstream SOL density in SF configuration
- Larger temperature at the separatrix observed in SF configurations

 In SN configuration P_{SOL} does not affect the density profiles and causes an increase of the separatrix temperature

- In SN configuration P_{SOL} does not affect the density profiles and causes an increase of the separatrix temperature
- Comparing separatrix density and temperature during a power scan in SN and SF- reveals a Faster increase of T_{e,sep} with power for SF- configuration

Target profiles in SN and SF- configurations

• In SN configuration Larger heat flux observed on the OSP (even without drift)

 A scan in power reveal a detachment threshold around 10 MW for SN configuration

Target profiles in SN and SF- configurations

• In SF- configuration most of the power is diverted to SP1 and SP2 The maximum heat flux always lower then SN configuration **Higher temperature** observed in attached condition in both the target SF- configuration exhibits detachment at higher power $P_{SOL} \approx 15 - 20 \text{ MW}$

Power scan in SN, SF-, SF+ and DN configuration

 A power scan reveals that the Outer Strike Point (OSP) exhibits the lower temperature in attached conditions in SN configuration

- OSP detachment achieved in SN and DN configuration **only at very low power**:
- SF- configuration detaches at higher
 - power w.r.t the other configurations

- Ar seeding with Density at the separatrix $n_{\rm sep} = 10^{20} m^{-3}$ and $P_{\rm sep} = 36 MW$
- Ar puffing increases in order to reach 90% radiation fraction: **DEMO-like scenarios**

Impurity seeding

- At these level of $n_{\rm e,sep}$ this is achieved with a $Z_{\rm eff,sep}$ between 1.4 and 2.6 and low diluition
- SF- configuration provides the lowest $Z_{\rm eff, sep}$

Impurity seeding

- At these level of $n_{\rm e,sep}$ this is achieved with a $Z_{\rm eff,sep}$ between 1.4 and 2.6 and low diluition
- SF- configuration provides the lowest $$Z_{\rm eff, sep}$$
- Ne seeding provides even lower $Z_{\rm eff}$ at high density likely due to lower temperatures

Conclusions

- DTT tokamak will be built at Frascaty, Italy
- DTT device will provide non-nuclear plasmas performance with high level of SOL loading
- Initial Plasma Exhaust studies reveal that conventional SN configuration will require impurity seeding to reach detachment
- SF configuration able to reach pure D_2 detachment at higher $\mathsf{P}_{\rm SOL}$
- At high density reasonable seeded impurity concentration obtained in all the configurations, with alternative snow-flake solutions providing lower concentration at the separatrix
- Integrated modeling (not described here) started to combine core and edge modeling

References I

- Agostinetti, P et al. Conceptual design of a neutral beam heating & current drive system for DTT. Fusion Engineering and Design. issn: 0920-3796 (2019).
- Albanese, R et al. Design review for the Italian Divertor Tokamak Test facility. Fusion Engineering and Design (2018).
- Ambrosino, R et al. Magnetic configurations and electromagnetic analysis of the Italian DTT device. Fusion Engineering and Design. issn: 0920-3796 (2019).
- Bufferand, H. et al. Near wall plasma simulation using penalization technique with the transport code SolEdge2D-Eirene. Journal of Nuclear Materials **438**, S445–S448 (2013).
- Ceccuzzi, S et al. Conceptual definition of an ICRF system for the Italian DTT. Fusion Engineering and Design. issn: 0920-3796 (2018).

References II

- Di Gironimo, G et al. The DTT device: Advances in conceptual design of vacuum vessel and cryostat structures. Fusion Engineering and Design, 2483 (2019).
- Garavaglia, S et al. Preliminary conceptual design of the DTT EC heating system. Fusion Engineering and Design (2018).
- Mazzitelli, G et al. Role of Italian DTT in the power exhaust implementation strategy. Fusion Engineering and Design. issn: 0920-3796 (2019).

Spare slides: ISP power scan

- A power scan reveals that at the Inner Strike point (ISP), the SN configuration exhibits the lower temperature in attached conditions
- ISP detachment achieved in SN and DN configuration only at very low power: higher power feasible in SF configurations