

DE LA RECHERCHE À L'INDUSTRIE

Damages on tungsten plasma facing components after experimental campaigns in WEST

Third IAEA Technical Meeting on Divertor Concept – 4th November 2019

M. Firdaouss, E. Tsitrone, M. Diez, A. Grosjean and the WEST team

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

OUTLINE

Background

- WEST mission
- Lower divertor
- Summary of C3 campaign

PFU #12 – damages due to transient event

- Damages overview on a trailing edge
- Focus with optical microscopy
- Crack network development
- PFU #12 damages along edges
- Damages on chamfered PFUs
- Optical hot spots
 - Optical hot spot (OHS) definition
 - Evidences of OHS after operations

WEST missions : pave the way towards ITER actively cooled tungsten divertor procurement and operation

First tokamak with actively cooled W monoblocks in full metallic environment

- ► Optimization of industrial scale production / qualification processes ahead of ITER divertor procurement
- Assessment of power handling capabilities / lifetime of ITER high heat flux tungsten components in tokamak environment (high heat flux / high fluence)
- Validated scheme for protection of actively cooled metallic plasma facing components

W monoblocks ITER-like PFUs (Plasma Facing Unit)

Inside view of WEST – C3 campaign start

Focus on lower divertor and ITER-like PFC

- 12 W monoblocks PFC on a specific location, from 6 suppliers (F4E, JADA and ASIPP)
- ► No shaping on W monoblocks, but sharp & chamfered edges
- First significant exposure of ITER-like PFC during this campaign (up to 2.5 MW/m²)
- Dedicated diagnostics in particular :
 - Very High Resolution infrared camera 0.1mm per pixel
 - Accurate misalignment measurements (~50µm)

Three PFU misalignment > ITER specification (0.3mm) at OSP:

- PFU 7 : 0.31 mm
- ► PFU 12 : 0.79 mm
- PFU 19 : 0.63 mm

PFU 12 at risk

Commissariat à l'énergie atomique et aux énergies alternatives M. Firdaouss | Damages on tungsten plasma facing components after experimental campaigns in WEST 4th November 2019

Significant exposure time and large number of transients

- ▶ 2.5 hours of plasma exposure, with 5GJ of injected energy
- L-mode operation, 700 disruptions in C3, more than 1000 disruptions in total
- ▶ Up to 5MW heating, with important radiated fraction (0.5 to 0.8)
- ▶ Moderate parallel heat flux at the OSP: 20 to 50MW/m² i.e. 1 to 2.5 MW/m² on the divertor target

OUTLINE

Background

- WEST mission
- Lower divertor
- Summary of C3 campaign

▶ PFU #12 – damages due to transient event

- Damages overview on a trailing edge
- Focus with optical microscopy
- Crack network development
- PFU #12 damages along edges
- Damages on chamfered PFUs
- Optical hot spots
 - Optical hot spot (OHS) definition
 - Evidences of OHS after operations

Damages overview on a trailing edge

- Damaged area identified after C3a using the robotic Articulated Inspection Arm during experimental campaign
- Localization on the trailing sharp edge
- Combination of single / few powerful events (>200MW/m² parallel during 10ms) with 0.8 mm misalignment
- No evolution during following operation C3b

Articulated Inspection Arm inspection – in-situ view

Melted W across monoblock and long crack

Ex-situ inspection between C3 and C4

4th November 2019 Commissariat à l'énergie atomique et aux énergies alternatives M. Firdaouss | Damages on tungsten plasma facing components after experimental campaigns in WEST

Focus with optical microscope

▶ PFU #12 dismounted at the end of C3 -> large melted area (0.5mmx0.5mm) on 2 monoblocks and a half

Monoblock 14 – Top and side views

Monoblock 15 – Top and side views

Crack network development

Long cracks in yellow on monoblocks far from the melted area (and melted material in blue)
Specific to this area, meaning that it is caused by a localized single / few transient event

OUTLINE

Background

- WEST mission
- Lower divertor
- Summary of C3 campaign

PFU #12 – damages due to transient event

- Damages overview on a trailing edge
- Focus with optical microscopy
- Crack network development
- ► PFU #12 damages along edges
- Damages on chamfered PFUs
- Optical hot spots
 - Optical hot spot (OHS) definition
 - Evidences of OHS after operations

Cea

mb 17 – left edge - non exposed side close to the melted area

- 2mm deep vertical cracks horizontal cracks
- ► Regular and numerous cracks

mb 19 – left edge - non exposed side

- Crack network well developed near the top surface
- ► Melting along the cracks

Cea

mb 23 - left edge - exposed side at the outer strike point

- Crack network well developed in the thickness
- Structural modification deeper than 2mm

cea

mb 28 – left edge - exposed side at the outer strike point

- Crack network well developed in the thickness
- Melting along large cracks

Cea

mb 32 – left edge - exposed side far from the outer strike point

mb 20 – right edge – non exposed side

Cea

mb 17 – right edge – exposed side at the inner strike point near the melted area

17

Missing material

cea

mb 14 - right edge - exposed side at the inner strike point near the melted area

Many droplets

PFU #12 – damages along the edges

Misalignment responsible for cracks, melting and droplets

Important damages at the non exposed side (heat flux higher at the OSP than ISP)

Few damages at the non exposed side (heat flux lower at the ISP than OSP)

Commissariat à l'énergie atomique et aux énergies alternatives M. Firdaouss | Damages on tungsten plasma facing components after experimental campaigns in WEST 4th November 2019

OUTLINE

Background

- WEST mission
- Lower divertor
- Summary of C3 campaign

PFU #12 – damages due to transient event

- Damages overview on a trailing edge
- Focus with optical microscopy
- Crack network development
- PFU #12 damages along edges
- Damages on chamfered PFUs
- Optical hot spots
 - Optical hot spot (OHS) definition
 - Evidences of OHS after operations

cea

Damages on misaligned chamfered PFU

Cracks and melting are also observed on chamfered PFUs

- Same type of damages on different locations, on chamfered PFU
- Chamfer not sufficient to prevent damages for significant misalignment

OUTLINE

Background

- WEST mission
- Lower divertor
- Summary of C3 campaign

PFU #12 – damages due to transient event

- Damages overview on a trailing edge
- Focus with optical microscopy
- Crack network development
- PFU #12 damages along edges
- **Damages on chamfered PFUs**
- Optical hot spots
 - Optical hot spot (OHS) definition
 - Evidences of OHS after operations

cea

First experimental evidence of Optical hot spot (OHS) in tokamak

Heat flux on a toroidal face due the particles flowing in a toroidal gap

VHR Infrared image of OHS during a disruption (digital level) on PFU13 (aligned with PFU12)

- ▶ OHS has a deep triangular shape, depending of geometry and plasma equilibrium
- ▶ OHS observed for perfectly aligned PFU on the corner or on the face
- Simulations have shown that the thermal response of W monoblock to OHS can be an issue for ITER, during ELMs and transient (*Surface heat loads on the ITER divertor vertical targets*, J. P. Gunn et al., 2017, Nucl. Fusion)

mb 16 – non exposed edge

mb 19 – non exposed edge

mb 28 - exposed edge at the outer strike point

Cea

mb 32 - exposed edge far from the outer strike point

Cea PFU #12 - Evidences of OHS after operations

mb 1 - exposed edge far from the inner strike point

mb 16 - exposed edge at the inner strike point

PFU #12 - Evidences of OHS after operations

OHS visible all along the plasma exposed edge, cracks near the strike points

- OHS deeper than misalignment -> exists even with perfect alignment
- Several OHS patterns:
 - Visual mark with no visible damage far from the strike points
 - Additional melting on non exposed edge (mb 19)
 - Melting and cracks up to the tip of the OHS at both strike points

Commissariat à l'énergie atomique et aux énergies alternatives M. Firdaouss | Damages on tungsten plasma facing components after experimental campaigns in WEST 4th November 2019

OHS are visible on many locations

▶ PFU #8 within ITER tolerances and chamfered, but OHS with melting on a corner.

31

Top face

Damages observed on ITER like PFU already at moderate heat fluxes in WEST

- Cracks and local melting on misaligned PFU side (both for sharp and chamfered) : damages presumably linked to transients outside strike
- Defining PFU misalignment tolerances to constrain the manufacturing and assembly process is required, as specified for the ITER divertor design. This has a consequence on cost and delay.
- Optical hot spots and subsequent damages are observed, even for PFU aligned within specs. They can not be avoided for the current design.
- Operation not impacted by damages up to now (only 12 ITER like PFU, L-mode operation)

C4 campaign (July - mid-November) – on-going

- 14 ITER-like PFU installed (from all potential ITER divertor suppliers)
- ▶ PFU aligned within ITER tolerances (0.3 mm)
- Damage propagation due to He/D campaign will be monitored
- ▶ Increased power up to 100MW/m² (parallel heat flux)

Medium – long term

- Impact of operating a large number of ITER like PFU on plasma performance : WEST phase 2 in S2 2020
- On-going modelling, mandatory to understand the physic of heat loads inside the gaps for next steps fusion devices

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr