Recent Developments in Gyrokinetic Understanding of Divertor Heat-Load Width

C.S. Chang1 for the SciDAC HBPS2 Team

\(\text{1Princeton Plasma Physics Laboratory} \quad \text{2SciDAC Center for High-fidelity Boundary Plasma Simulation}\)

\(\text{*This work funded by DOE FES and ASCR through the SciDAC Program }\)
\(\text{*Computing resources provided by OLCF and ALCF via INCITE, and NERSC via DOE SC allocation}\)
The gyrokinetic code XGC tries to simulate plasma particle dynamics as in real experiment, according to Vlasov-Fokker Planck equation, below gyrofrequency

Mission: Use largest computers to perform first-principles-based studies
- Total-f particle-in-cell
- Neutral particle recycling with atomic cross-sections
- Logical sheath at material bd
- Non-Maxwellian plasma
- NL Fokker-Planck operator
- Heat, momentum & cooling source/sink
- > Trillion particles: Requires largest computers
- Attached plasma so far, moving toward detachment.

Free parameter: neutral particle recycling rate (R=0.99) & \(\Phi(\text{limiter}) = 0 \).
XGC outputs all the drift motions, including ExB around X-point

- **Forward Grad-B:**
 - Potential hill with higher plasma density around X-point
 - Lower T_e around X-point (pressure equilibration)
 - Impurity particles from SOL tend to enter into core through the high-field side near X-point

- **Backward Grad-B** reverses the ExB drift direction

[Chang et al., PoP 2019]
XGC automatically outputs the gyrokinetic heat-flux footprint consistently with neoclassical, turbulent and neutrals physics.
The edge gyrokinetic code XGC says

- Today’s conventional tokamaks and 5MA-ITER:
 - Transport in pedestal is at ion neoclassical level
 - Transport across separatrix is also at ion neoclassical level despite the ”blobby” turbulence.
 \[\lambda_q \sim 0.63/B_{pol}^{1.19} \] [Eich (Goldston)]

- 15MA-ITER: Transport in pedestal and near-SOL is dominated by kinetic micro-turbulence
 - Weak neoclassical ExB shearing due to small \(\rho_{i,\text{pol}}/a \) cannot suppress turbulence [Kotchenreuther, Chang 2017]
 - This also includes the weak neoclassical X-point orbit-loss driven ExB shearing rate [Chang 2002, 2017]
 - XGC finds that \(\lambda_q^{\text{XGC}} \) is spread by kinetic trapped-electron turbulence by \(>6 \times \lambda_q^{\text{Eich}} \)

- Machine Learning and Regression reveal a hidden parameter \(a/\rho_{i,\text{pol}} \)
 - Consistently with the neoclassical ExB shearing physics

- A simple correction to Eich formula is identified (preliminary)
 - A manufactured JET plasma at higher \(I_p \) and ITER plasma at \(I_p\sim12\text{MA} \) are needed to refine the formula

- To validate the XGC findings – trapped-electron turbulence – on today’s tokamaks, a turbulence-dominant wide pedestal with high \(T_e(\text{sep}) \) may be used: \(\rho_{i,\text{pol}}/L_{\text{ped}}<<1 \) and weak \(\nu_e \) at separatrix
 - QH mode with edge ECH/LHH could be a good candidate?
 - \(\lambda_q \) measurements from EAST with edge LHH shows a significant \(\lambda_q \) broadening?
Kinetic effect: Neoclassical ion orbit excursion generates radial electric field

- Banana width
 \[\rho_{ip} \propto \frac{1}{B_{pol}} \]
- Ion/electron banana width ratio is \((m_i/m_e)^{1/2} \gg 1 \)
 \[\Rightarrow \text{Radial charge separation} \]
 \[\Rightarrow \text{(Sheared) radial electric field generation} \]
 [Chang, PoP2004]
 \[\Rightarrow \text{Suppresses turbulence} \]
- If \(\rho_{ip}/L \rightarrow 0 \), neoclassical \(E_r \rightarrow 0 \)
Kinetic effect: Neoclassical X-point orbit loss generates E_r-layer and toroidal rotation in the edge, from ion orbit drift ($1/B_{pol}$)

- $B_p=0$ at magnetic X-point and is small around it.
 - Weak poloidal ion rotation
 - Confinement is lost \rightarrow ion orbit loss
 - Negative charge within ion banana width Δ_b inside separatrix \rightarrow strong $E_r<0$ in Δ_b layer

- Strong E_r or toroidal rotation creates steep ∇p (force balance, electrostatic confinement) \rightarrow pedestal

![Typical ion X-point loss orbits (XGC)](image)

![Buildup of E_r in XGC1 (DIII-D)](image)

Grounded Wall

Buildup of E_r in XGC1 (DIII-D)

Major contribution to outer divertor heat-load
XGC says: with $a/\rho_{i,\text{pol}}$ becoming very large, hence the neoclassical ExB shearing rate becoming weak, the 15MA ITER pedestal becomes turbulence-dominant.

- A new turbulence-dominant pedestal profile is established in XGC1 in the pedestal-turbulence self-organization time (~1ms): but only a “wiggly” energy balance has been achieved yet.
 - n_e pedestal is ~2x milder than the MHD-limited profile.

- ITER at full-current may achieve a significant H-mode pedestal height that
 - Is only 10% lower than the operation design value,
 - But, mild enough not to provoke the usual ELMs from peeling-ballooning modes.

- More simulations will be performed on world #1 Summit, to confirm this important result further.
Predictions from gyrokinetic XGC agree with $\lambda_q^{14}(\text{Eich})$ on existing tokamaks, but not on 15MA ITER.

- Ion drift-motion dominant $\propto 1/B_{\text{pol}}$
- But, the same code predicts $\lambda_q^{(XGC)} > 6\lambda_q^{(\text{Eich})}$ for 15MA ITER
 - Confirmed via multiple attempts
- High-current C-Mod experiments have B_{pol} similar to 15MA ITER
 - Both experiment and XGC showed $\lambda_q \sim \lambda_q^{14}(\text{Eich})$: Is this a bifurcation?
 - Hidden parameters, or something is wrong: simulation has been confirmed multiple times
- XGC on NSTX-U at 2MA also produced a wider λ_q
 - But, not at 1.5MA
 - Hidden parameters, again?
XGC: Electron heatSpread by kinetic trapped electron modes is the suspect

- Fact: $\rho_{ip}/a \rightarrow 0$ in 15MA ITER yields little neoclassical ExB shearing,
- Fact: $(2a/R)^{1/2} \rightarrow 1$ in NSTX-U with warm T_e yields TEM turbulence

TEM streamers are the suspect. ITGs do not penetrated into SOL [Chang, 2009].

XGC: Similar to blobs in today’s conventional aspect tokamaks

XGC found a mixed TEM-blob turbulence structure on 2MA NSTX-U

Isolated “blobby” turbulence (with strong sheared-ExB flow across separatrix)

Connected “streamer”-type turbulence (with weak sheared-ExB flow across separatrix)
Machine learning reveals trapped electron interaction with turbulence in the 15MA ITER edge (R.M. Churchill)

A strong non-adiabatic electron response found across the separatrix: characteristics of TEMs.

- K-means clustering, with K=6
- At a higher energy band, trapped electrons show correlated response to turbulence
 - Another sign of CTEM turbulence
- Because of the high $\omega_r\sim\nu(\rho/L)$ around the separatrix, q needs to be high for precession resonance by trapped electrons:
 $$V_{\text{precess}}\sim\nu(\rho/R)(B/B_P)$$

→ easier excitation of Collisionless trapped electron modes (CTEMs) just inside the separatrix, $\psi_N=0.98-1$, where ∇P_e is high.
Looking for hidden parameters from CTEM physics understanding

• Large \(a/\rho_{i,pol} \) weakens the neoclassical ExB shearing rate \(\rightarrow \) stronger TEM

In the present conventional aspect-ratio tokamaks, \(\lambda_q(XGC) \) follows \(\lambda_q(Eich) \).

However, \(\lambda_q(XGC) \) shows a discontinuity (of multiple solutions) between high-\(Ip \) C-Mod and 15MA ITER.

When we use \(B_{pol} a/\rho_{i,pol} \) as the scaling variable,
- \(\lambda_q(XGC) \) in the present tokamaks still follows \(\lambda_q(Eich) \)
- and the discontinuity from high-\(Ip \) C-Mod to 15MA ITER disappears
Moving forward for a more accurate λ_q-scaling law towards ITER

Requires a large compute time on Summit

We need at least a couple more data points between the high-Ip JET and the full-B ITER
- Collaboration with JET and ITER teams needed to build some artificial plasma and B equilibriums

Further refinement using machine learning will be performed after more simulations.
How do we validate the TEM broadening of λ_q in existing tokamaks?

Most of the NSTX-U edge electrons are in banana regimes \rightarrow Strong CTEM drive if $\nu_e^* \approx \nu_e < 1 :$ validated

- $\lambda_q(\text{XGC})$ for 2MA NSTX-U shows $\sim 2 \times \lambda_q(\text{Eich})$
- $N_e^*,<1$ at $\Psi_N=0.99$, most of the electrons are banana trapped
- Edge turbulence across separatrix is mixture of blobs and streamers \rightarrow TEM

• Θ represents CTEM threshold
• Assume CTEM threshold $\sim (a/R)^{1/2}/\nu_e^* > \eta$
• Fit α and η to make $\Theta=1$ for NSTX-U 2MA, & 0 for 1.5MA \rightarrow $\alpha=2$ and $\eta=1.75$ have been chosen
How do we validate the TEM broadening of λ_q in existing tokamaks?

- Look for experiments with “ITER-similar” edge condition
 - Turbulence-limited pedestal: large L/ρ_{pol}
 - Low $\nu_e^* < 1$ around the magnetic separatrix (using q_{95})
 - Low torque input
 → Can we study the QH mode edge plasma with low torque input?
 - Edge ECH/LHH can be helpful to reduce $\nu_e^*<1$, given the experimental observations that the pedestal T_i increases more than T_e does in QH.

- Could the broader λ_q observed in EAST [Wan2016, Zhang 2016; Deng2018], with Lower Hybrid Heating in edge, be an example for the kinetic trapped-electron-mode broadening?
 - $T_e(sep) \sim 150$eV, $n_e(sep) \sim 1 \times 10^{19}m^{-3}$ → $\nu_e^* < 1$
 - $\lambda_q^{XGC} \sim 1.7 \lambda_q^{Eich}$: qualitatively agrees with experimental observation
 - Such a broadening was not seen without edge RF heating
XGC suggests that the wide λ_q ITER is not from a turbulence bifurcation, but a gradual transition: supported by experimental measurement on EAST?

2MA NSTX-U, or EAST with edge LHH

(XGC: Figures not to scale)
Summary

The edge gyrokinetic code XGC says

- Today’s conventional tokamaks and 5MA-ITER:
 - Transport in pedestal is at ion neoclassical level
 - Transport across separatrix is also at ion neoclassical level despite the "blobby" turbulence.
 \[\lambda_q \sim 0.63/B_{pol}^{1.19} \quad [\text{Eich (~Goldston)}] \]

- 15MA-ITER: Transport in pedestal and near-SOL is dominated by kinetic micro-turbulence
 - Weak neoclassical ExB shearing due to small \(\rho_{i,\text{pol}}/a \) cannot suppress turbulence [Kotchenreuther, Chang 2017]
 - This also includes the weak neoclassical X-point orbit-loss driven ExB shearing rate [Chang 2002, 2017]
 - XGC finds that \(\lambda_{qXGC} \) is spread by kinetic trapped-electron turbulence by >6x \(\lambda_{qEich} \)

- Machine Learning and Regression reveal a hidden parameter \(a/\rho_{i,\text{pol}} \)
 - Consistently with the neoclassical ExB shearing physics

- A simple correction to Eich formula is identified (preliminary)
 - A manufactured JET plasma at higher \(I_p \) and ITER plasma at \(I_p \sim 12\text{MA} \) are needed to refine the formula

- To validate the XGC findings – trapped-electron turbulence – on today’s tokamaks, a turbulence-dominant wide pedestal with high \(T_e(\text{sep}) \) may be used: \(\rho_{i,\text{pol}}/L_{\text{ped}}<<1 \) and weak \(v_e \) at separatrix
 - QH mode with edge ECH/LHH could be a good candidate?
 - \(\lambda_q \) measurements from EAST with edge LHH shows a significant \(\lambda_q \) broadening?