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Introduction to the Work Package O

EUROfusion recognizes the complexity of the divertor challenge and the need for

back-up solutions.
The assumption (true or not) is that the ITER solution will not extrapolate to DEMO.

The objective of WP-DTT1/ADC is to provide an assessment of the usefulness and
feasibility of alternative divertor configurations for EU-DEMO by December 2023.

Experimental results

|dentification of
candidate designs

Theoretical understanding 5 WP-DTT1/ADC

/

Numerical tools

Assessment of
feasibility
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Equilibria /@)

SXD

-
o

« All the equilibria are realized with 6 external
coils.

 Lorentz forces on coils within mechanical
constraints. Ripple within 0.6%.

» Unusual shape of the TF coils to
accommodate needs of alternative
configurations. ol
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Multifluid calculations

Multifluid calculations were
carried out with SOLPS-ITER.

D, He and Ar included, fluid
neutrals and no drifts (for now).

All configurations investigated,
only SN and SXD at sufficient

level of maturity.

“Matrix” scans were used to
investigate the response of the
different geometries to similar
conditions.

SXD (potential) benefits:

* Lower ngg, for same Ar
concentration;

« Bigger window gives possibility
to increase the power crossing
the separatrix (and hence reduce
core radiation)?
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Turbulence

First 3D turbulence simulations of alternative

divertor configurations ever produced.

Sandbox approach for the moment.

SFD: drift induced electrostatic recirculating cell re-
distributing the flux.

SXD: stronger turbulence in the divertor leg.
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TF structural calculations @)
=2
Structural calculations were carried out to assess SXD
potential failure of the TF coils. DND
Stress linearization used to assess the failure points.
All configurations fail, but stress concentration can be oo o
probably removed in most cases. et o
Intercoil structures and fillets not yet optimized. Room s
for improvement. seroae
SN
SFD

1,6453e9 XD

1,68e8
8,4829e7
1,6614e6

3,3226e9 Max
E 5e8

4,3768e8

—— 3,7536e8
3,1303e8
2,5071e8
1,8839e8
1,2607e8
6,3747e7
1,425e6 Min

4,1909e8
3,3646e8
2,5382e8
1,7119e8
8,8549¢7

59135e6

Fulvio Militello | IAEA-TM | Vienna | 6/11/2019 | Page 6/9



TF structural calculations

Structural calculations were carried out to assess | SXD
potential failure of the TF coils. DND
Stress linearization used to assess the failure points.
All configurations fail, but stress concentration can be oo o
probably removed in most cases. et o
Intercoil structures and fillets not yet optimized. Room s
for improvement. seroae
SN
SFD
1,6453e9 XD
vt o 5322669 M
i ..
59135e6 L 3,753668
3,1303e8
2,5071e8
1,8839e8
1,2607e8

6,3747e7
1,425e6 Min

Fulvio Militello | IAEA-TM | Vienna | 6/11/2019 | Page 6/9



TF structural calculations

Structural calculations were carried out to assess

potential failure of the TF coils. DND SXD

Stress linearization used to assess the failure points.
All configurations fail, but stress concentration can be EM
probably removed in most cases.
Intercoil structures and fillets not yet optimized. Room j};iff::
for improvement. seroae

Out of plane forces can count for ~30% of the total in
critical points

SN SFD

Single Null - Stress Intensity

XD

1200 T
é,g;lggefa - Stress Intensity - TF + PF + Plasma
5:838398 === Stress Intensity - TF
5,0067¢8 1000 3,5532e9
4,175¢8 667¢8
3,3433e8 E 5,8436e8
2,5116e8 S 800 501738
é’iggg 7 z 4,1909¢8
L 661406 LR 3364668 3,3226e9 Max
% 2,5382e8 508
- 1,7119e8 e
§ 400 8,8549¢7 4,3768e8
] 59135e6 L 375368
.
200 3,1303e8
3 2,5071e8
0 T
00 02 04 06 08 10 1,8839¢8
Normalised Path Length 126078
"
6,3747¢e7

1,425e6 Min

Fulvio Militello | IAEA-TM | Vienna | 6/11/2019 | Page 6/9



TF structural calculations

Structural calculations were carried out to assess

potential failure of the TF coils. DND SXD
Stress linearization used to assess the failure points.
All configurations fail, but stress concentration can be %M
probably removed in most cases. Jeitat
Intercoil structures and fil

for improvement.

Out of plane forces can ¢
critical points

SN
1200 T XD

1000

1,6453e9
6,67e8
5,8383e8
5,0067e8
4,175e8
3,3433e8
2,5116e8
1,68e8
8,4829e7
1,6614e6

800

600 . 3,3226e9 Max

. 5e8
I 8,8549¢7 ' 4,3768e8
59135e6

— 3,7536e8
3,1303e8
E 2,5071e8
1,8839e8
1,2607e8
I 6,3747e7

1,425e6 Min

Stress Intensity (MPa)

0.0 02 04 06 08 10
Normalised Path Length

Fulvio Militello | IAEA-TM | Vienna | 6/11/2019 | Page 6/9



3D builds &)

« 3D builds were generated to
assess maintenance
feasibility.

 Intercoils structures help with
passive stabilization.

« SFD lower intercoil structures
obstruct port.

Marzullo et al., ISFNt (2019) Fulvio Militello | IAEA-TM | Vienna | 6/11/2019 | Page 7/9
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Control

* A minor disruption and a
big ELM were simulated
imposing:

Minor disruption
AL = —0.1,ABp0 = —0.1

Big ELM
AL; = 0.1,ABpe = —0.1
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Shape variation might be a
problem, especially for
upper wall (AZ~25cm)

ELM
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Summary and Conclusions

(//?
(
W

A broad overview of the benefits and challenges of the alternative
configurations is ongoing.

Take home messages:
« physics procedure and potentially (!) the trends established;
« interplay between intercoil structures and ports is crucial;
« outer TF section and OoP forces are critical for the ADC designs;
 remote maintenance is a key constraint;
« control is difficult for all ADC configurations.
Options:
» Exploit the continuity between SN/SXD/XD.
« Optimize the supporting engineering structures when possible.

Conclusions:
* For the SN the physics is challenging but the engineering is appealing;

* For the ADCs the physics is appealing but the engineering is challenging;
* There is no magic bullet
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The “looping away” strategy

For a reliable assessment, four
loops are envisaged between now
and December 2023: Hybrid or novel

Base with internal coils

Base

2020-21

2019-20

2018-19

Optimized

KN

2022-23
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Out of plane forces and fatigue

* Hoop forces not enough to induce failure per

se most of the time (some exceptions in SXD
and XD).
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Out of plane forces can count for ~30% of the
total in critical points, thus inducing failure.
Princeton D-shape not essential. Increasing
rigidity with inter-coil structures can help.
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Inf/out asymmetry in SXD
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ADC features

SND XD SXD SFD DND

Elongation kggs, 1.65 1.65 1.65 1.65 1.65

2 | Trinagularity 8ggs 0.33 0.29 033 024 033
% Volume V, [m3] 2360 2365 2340 2360 2350
Vie/Vp 3.87 4.02 485 404 415
Rupt [m] 7.51 7.08 7.50 742 748

= Gradient |VBp x| [T/m] 0.387 0227 0.247 0.032 0.378
5 Vsol (p=1mm) [m] 6.40 8.71 8.51 227 475
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Pumping

« Kinetic Monte Carlo simulations (DIVGAS)
were performed to assess pumping
performance in different geometries
assuming given incoming flux.

« Within a realisitc range of capture
coefficient & Helium removal is feasible.

« The XD divertor compared with the
reference SN case allows for higher neutral
compression in the PFR, thus facilitating
pumping. For the case of SX divertor this
effect is even more pronounced

& =probability that the particle is pumped

at the pump

(Pumped flux in molecules per second per toroidal length)
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Pumping (@)

=
SN DEMO divertor SN, XD & SX DEMO divertors
10% ¢ 10%
7 For one div. cassette i For one div. cassette
10% i . 10% _
7 [ = | ®,=300 Pa.m?/s]
107 = | / D: 1.65x102" (m's"1)
z P 022 - //
21021 E /
: : 5 i ——&—— SN, 10 Pa@ Sep., D
. == ——@—— XD, 10 Pa@ Sep., D
81 0®L / Qrusion=2GW 310 —v— SX, 10Pa@ Se::., D
E g He: 1 46x‘| 019 (m"‘s = ——e—— SN, 1 Pa@ Sep., He
= C — [ _ _ _ _ IE 2 P B e n:: —=—— XD, 1 Pa@Sep., He
e ] SN. 1 Pa@ S D 1020 ——y—— SX, 1 Pa@ Sep., He
10" s araeoe=ll U E_
- e - SN10Pu@Sep,D [ He: 1.46x10™ (m"s)” Qpsion=2GW
1018 . . - — T SN, 1 Pa'a%Sep., He 1019 . . . .
0 0.2 04 0.6 0.8 1 0 0.2 04 : 0.6 0.8 1
3

. Higher neutral pressure and gas collisionality at PFR, allow for imrpoved helium removal. More specific, within a
realisitc range of capture coefficient €, helium removal is feasible, whereas the fuel gas pumping can be realized at €
above 0.2, assuming that the fuel particle throughput is 300 Pa.m?3/s.

. The simulations show that the design of the pumping system is crucial and challenging in order to satisfy the particle
exhaust requirements.

. The XD divertor compared with the reference SN case allows for higher neutral compression in the PFR, thus
facilitating pumping. For the case of SX divertor this effect is even more pronounced.

For more details please visit Poster #11, Y. Igitkhanov (6% Nov 2019,
Session lll) Fulvio Militello | IAEA-TM | Vienna | Date | Page 2



Specifications of the equilibrium 7®)

e plasma current profile parameters:
o Plasma current I,, = 19.07MA
o poloidal beta g, = 1.141
o internal inductance [; = 0.8
o Two different values of the flux on the plasma boundary with a constant plasma
current [,,; = 19.07MA shall be considered: at Start of Flat Top (SOF) and End

of Flat Top (EOF)
e flat-top plasma shape parameters
o R =8938m
o AR =3.1
0 kog = 1.65
o J95 =0.33

o Vy = 2466 m3

. PF coil current

. Poloidal coils cross-sections shall be determined assuming a current density limit of 12.5MA / m"2
. Magnetic field

. The maximum field at the location of the PF and CS coils shall not exceed 12.5T

. Vertical Forces

. Maximum vertical force on a single PF shall not exceed 450 MN

. Maximum vertical force on the CS stack shall not exceed 300 MN

. Maximum separation force in the CS stack shall not exceed 350 MN

. In case of two or more PF coils positioned close to each other: over a 3m poloidal length, the total vertical force from the poloidal
coils on the supports shall not exceed 450MN

. TF coils

. A 16 TF coil cage shaped to keep ripple below 0.6%

. Presence of TF shells not up-down symmetric

. Divertor

. Distance between the divertor plates and the X-point region <Im

. Minimum grazing angle 1.5deg Fulvio Militello | IAEA-TM | Vienna | Date | Page 2



Simplified assumptions on internal
structure of the winding pack.

Correctness of the approach
checked by WP-MAG.

EM forces calculated on 9 filaments
— convergence studies assessed it is
ok.

1) calculate the principal stresses;

2) linearize them through the
thickness of the component by
splitting the actual stress/position
function into a peak (maximum), a
membrane (average) and a bending
component (linear fit corresponding
to the equivalent torque);

3) application of Tresca criterion on
the membrane with failure limit of
660 MPa and on the membrane +
bending with failure limit of 870
MPa.

\
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-

of mesh nodes

Many millions
of mesh nodes

aged variant of the 316LN steel alloy
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