Core-Pedestal Constraints on Divertor Design

^{By} A.W. Leonard

Presented to IAEA-TM on Divertor Concepts Vienna, Austria Nov. 4-7, 2019

Upstream (midplane) constraints critical to improved confidence in future divertor design

- Divertor design must simultaneously accommodate core plasma as well as divertor target constraints
 - Divertor: $q_{\perp} \leq 10 \text{ MWm}^{-3}$, $T_e \leq 5 \text{ eV}$, no transients (ELMs)
 - Core: High confinement, High β , etc.
- Divertor dissipation nonlinearly dependent on upstream boundary conditions; $q_{||}, n_{sep}, f_{imp}$ (radiator)

$$-T_{div} \propto \frac{q_{\parallel}^{10/7}}{n_{sep}^2 L_{\parallel}^{4/7}} \frac{(1-f_{rad})^2}{(1-f_{mom})^2} , n_{div} \propto \frac{n_{sep}^3 L_{\parallel}^{6/7}}{q_{\parallel}^{8/7}} \frac{(1-f_{mom})^3}{(1-f_{rad})^2} , f_{rad} \propto n_{e,div}^2 f_z$$

- Required divertor volume (L_{\parallel}) , or even need for an advanced divertor configuration is dependent on prediction of upstream boundary conditions!
- For discussion:

SAN DIEGO

- What is the status of predictive capability for upstream constraints?
- What work is most urgent to improve our predictive capability?

Pedestal physics a critical aspect for prediction of upstream constraints in future tokamaks

- q_{\parallel} at divertor entrance (SOL λ_{q})
 - Will pedestal turbulence expand SOL beyond existing λ_q scaling?
 - Will MHD stability expand SOL λ_q and/or limit upstream density?
- Accessible values of n_{sep}/n_{ped}
 - How does the pedestal density gradient respond to a radial ion flux?
 - What will be the core fueling rate setting the radial ion flux?
- Tolerable upstream seeded (radiating) impurity density, $n_{imp,sep}$
 - Maximum core n_{imp} ; $P_{sep} \ge f P_{LH}$, Core MHD (NTMs), Fuel dilution
 - Accessible $n_{imp,sep}/n_{imp,ped}$ dependent on pedestal density profile
- Other factors to consider
 - Divertor detachment control requirements; X-point sensitivity
 - Geometry; Triangularity, Double vs. Single null

Pedestal turbulence may drive SOL width beyond existing scaling

Critical scaling parameter: $B_p(a/\rho_i)$?

- How do we validate these models in regimes in existing devices where the drift width still dominates?
 - Scaling of turbulence characteristics?

MHD stability may be a limit for narrow heat flux width during detached conditions

- MHD stability limit reached for n_{sep} ~0.5n_{GW} derived (Eich NF 2018):
 - ITPA λ_q scaling
 - $\ \lambda_{ne} {\sim} \lambda_{Te}$
 - α_{crit} ~2.5

Other observations

- Pedestal pressure often degrades for $n_{sep} \ge 0.5 n_{GW}$
- SOL width increases with high density and detachment
- SOL limits may also be correlated with collisionality

DIII-D finds similar ∇p_{sep} saturation at high power and high density

- Separatrix pressure gradient saturates for n_{sep} ≥ 0.4 n_{GW}
- Normalized pedestal pressure (EPD) does not degrade at high density
- High α_{sep} likely due to challenging T_i measurement
 - T_i from CVI CER compromised by edge effects near separatrix
 - Main ion T_i measurements becoming available

SOL λ_{q} expands at high density and high power

- SOL λ_{ne} broadens twice that of λ_{Te} during detachment
- Divertor density width increases consistent with midplane λ_{ne}
- Deteached divertor density increases only modestly with power IAEA-TM Div. Concepts, Vienna Sept. 2015

Questions and implications of SOL MHD stability remain

- Separatrix MHD stability limit could potentially improve divertor performance
 - Increased SOL λ_q would reduce q_{11} into divertor
 - Could reduce required n_{sep} and/or n_{imp} required for detachment
 - Would result in lower divertor density during detachment
- Will MHD stability improve divertor performance in DEMO?
 - − Will $n_{sep} \ge 0.5 n_{GW}$ be consistent with DEMO pedestal density?
 - Will enhanced MHD ballooning transport degrade pedestal?

Separatrix density is a key variable for divertor design

• Divertor conditions depend nonlinearly on upstream density

$$-T_{div} \propto \frac{q_{\parallel}^{10/7}}{n_{sep}^2 L_{\parallel}^{4/7}} \frac{(1-f_{rad})^2}{(1-f_{mom})^2} , \quad n_{div} \propto \frac{n_{sep}^3 L_{\parallel}^{6/7}}{q_{\parallel}^{8/7}} \frac{(1-f_{mom})^3}{(1-f_{rad})^2}$$

- A small change in separatrix density can make a big difference
- Core operational scenarios specify (at best) pedestal top density
 - What fraction of n_{ped} can we assume in divertor design?
 - Existing devices exhibit $n_{sep}/n_{ped} \sim 0.3 0.7$ (Quite a range!)
- What do divertor designers need from core/pedestal physics?
 - Specification of core fueling, e.g. pellets for tritium fueling, beam fueling, etc.
 - A model of pedestal density transport; predictive capability for pedestal profile from given core and edge source

Pedestal density transport was examined in DIII-D through divertor geometry changes

MDSplus, shot = 166070, run = EFIT01, time = 3700.00 MDSplus, shot = 166033, run = EFIT01, time = 2440.00

A. Leonard IAEA 2016

• Closed divertor (upper) reduces recycling neutrals from outboard divertor reaching the midplane

• For similar divertor conditions pedestal responds to lower ionization source with lower density gradient

Reduced pedestal fueling allows access to divertor detachment at fixed n_{ped}

How much higher $n_{\rm sep}/n_{\rm ped}$ can we expect in future tokamaks with reduced edge fueling?

Pedestal transport model development a critical need for divertor design

- US has initiated a coordinated effort to address this issue (following talk)
 - Experimental effort to measure and quantify pedestal transport
 - Theory effort to develop pedestal transport models
- Can a coordinated international effort be launched?
- What are the biggest challenges?
 - Diagnostics
 - Interpretive modeling of diagnostics
 - Model development

Allowed seeded SOL impurity density is also uncertain

- Seeded impurity density key parameter for divertor design
 - Heat dissipation ~ $\propto f_{\text{imp}}$
- Core (pedestal) impurity limits set by a several issues
 - Fuel dilution
 - Maximum core radiation $P_{sep} > P_{LH}$
 - Changes to current profile, NTMs
- Ratio of n_{imp,sep}/n_{imp,ped} dependent on pedestal density profile
 - Neoclassical pinch increases n_{imp,ped}/n_{imp,sep} in existing devices
 - A pedestal density transport model is needed to determine n_{imp,ped}/n_{imp,sep} in future tokamaks

Maximum core impurity level set by several limits

- Fuel dilution limits maximum tolerable impurity density
- Maximum impurity density for heat flux dissipation
 - $P_{sep} \ge \alpha P_{LH}$
 - Required P_{sep} dependent on core scenario (still uncertain)
- Core impurities may trigger NTMs due to modified current profile

Alcator C-mod

Impurity density may be limited by core MHD stability, below that for $P_{sep} \ge P_{LH}$

AL FUSION FACILI SAN DIEGO

- NTMs arise in high β plasmas with higher Z impurity seeding
- Core plasma MHD stability at high β very sensitive to current profile

Neo-classical transport across pedestal in future tokamaks increase SOL impurity density limit

 Pedestal neoclassical pinch dependent on ratio of density to temperature gradient

$$\left(\frac{v}{D}\right)_{neo} \propto Z \left(d \ln(n_i) / dr - H d \ln(T_i) / dr \right)$$

- Shallower pedestal density gradient allows for higher n_{imp,SOL}/n_{imp,ped}
- The neoclassical effect for lower Z seeded impurities is smaller but still likely important

Sensitivity of X-point to cooling, neutral flux, etc. also a factor in divertor design

Pedestal Degradation

	Pre D ₂	Early	Late
WMHD (MJ)	0.62	0.59	0.52
p _{e,ped} (kPa)	3.4	2.7	1.9
n _{e,ped} (10 ²⁰ m ⁻ 3)	6.9	9.6	11.4
T _{e,ped} (eV)	330	190	120

Steady degradation in $p_{\text{e},\text{ped}}$ with increasing D_2 should be expected at these parameters

- Pedestal MHD stability is on ballooning branch
- Will peeling limited pedestals also degrade with detachment?

X-point along with divertor conditions to be correlated with pedestal profile evolution

Other core-edge issues are also important

• X-point sensitivity to cooling, neutral flux, etc.

- Requirements for divertor detachment control
- Not adequately studied in core scenario development

• Transients

- What transients from core must divertor design handle?

• Shaping

 Triangularity and Double-null are two features which can significantly affect divertor design

Others?

