Insights from Systems Code Analysis on Power Exhaust Requirements for Future Fusion Power Systems

By
Mickey Wade

Presented to
IAEA Divertor Concepts Meeting
Vienna, Austria

November 6, 2019
General Impression is that Power Exhaust Requirements Place Significant Constraint on Minimum Size of Fusion Power Systems

- Divertor Heat Flux: \(q_{div} \propto (1 - f_{rad}^{core})P_{heat}/2\pi R\lambda_q \)

- General Impression:
 - \(P_{heat} \) set by need to produce requisite electricity
 - \(f_{rad}^{core} \) limited by need to stay above L-H transition power threshold
 - \(\lambda_q \) set by core performance requirements (choice of \(I_p \) drives \(B_p \))
 - Primary “control” is device size \(R \)

- In certain cases (especially at ITER-level of confinement, \(H_{98y2} = 1 \)), this impression is accurate
 - Places increased importance on R&D to address this issue

- However, this is not universally this case...
Power Exhaust Requirements are Strongly Linked to the Achievable Core Confinement

- Tendency to think power exhaust is roughly independent of confinement
 Fusion power needed for electricity sets boundary power flow

- But it's a bit more complicated...

\[P_{\text{fus}} \propto p_{\text{th}}^2 \propto (P\tau_E)^2 \propto (PHP^{-\alpha_p})^2 \]
\[P \propto P_{\text{fus}}^{1/2(1-\alpha_p)} / H^{1/(1-\alpha_p)} \]

\[\rightarrow \text{For } H_{98y2}, \alpha_p = 0.67 \rightarrow P \propto P_{\text{fus}}^{1.5} / H_{98y2}^3 \]
\[\text{For } H_{89}, \alpha_p = 0.5 \rightarrow P \propto P_{\text{fus}} / H_{89}^2 \]

- Additionally, the required \(P_{\text{fus}} \) increases as confinement quality decreases

\~ {\text{factor of two decrease in }} P_{\text{SOL}}
Outline

• Introduction/Motivation

• GA systems code (GASC) and Compact Fusion Pilot Plant (CFPP)

• Impact of Power Exhaust and Confinement on CFPP cost

• Insights on Important R&D for CFPP Cost Attractiveness

• Summary
Based on a Set of Assumptions and Constraints, GASC-Opt Finds Optimal Solution to Minimize Chosen Optimization Parameter

Set of Assumptions (e.g.)
- Magnet Type (REBCO)
- Tritium Breeding Ratio (1.0)
- TF Bucking (Free TF)
- Thermal Efficiency (0.4)
- Blanket Power Mult. (1.2)
- Pulse Length (8 hr)

Set of Constraints (e.g.)
- $P_{\text{net}} = 200$ MWe
- $q_{\text{div}} < 10$ MW/m²
- $f_{GW} < 1$
- $f_{\text{rad,core}} < 0.75$
- $f_{BS} < 0.9$
- TF Stress < 667 MPa
- $J_{TF,sc,\text{limit}}/J_{TF,sc} > 2$
- $\beta_N/\beta_{N,\text{limit}} < 0.75$

Outputs (e.g.)
- Major Radius
- Aspect Ratio
- Plasma Ratio
- Toroidal Current
- CD Power
- Toroidal Field
- Fusion Power
- CD Power
- β_T, β_P, β_N
- f_{BS}, $f_{\text{non-ind}}$, f_{ind}
- f_{GW}, q_{div}
- Δ_{TF}, Δ_{CS}, Δ_{BI}
- Tritium Inventory
- $\$\$_{TF}$, $\$\$_{Bl}$, $\$\$_{BOP}$
- COE

Single Optimization Parameter (e.g.)
- Cost of Electricity
- Capital Costs
- Operating Costs
- Major Radius

M.R. Wade / IAEA Div Concepts Nov 2019
Power Exhaust Models in GA System Code (GASC)

- **Core**: Standard power balance assuming coronal equilibrium emissivity

- **Divertor → Two-point model with impurities**

 \[
 q_{\text{div}} = P_{\text{Sol}}(1 - f_{\text{rad,div}})/A_{\text{wetted}} \\
 q_{\text{rad,div}} = n_{e,\text{mid}}T_{e,\text{mid}} \left(2\kappa_0 f_{z,\text{core}}\eta_{z,\text{div}} \int_{T_{e,\text{mid}}}^{T_{e,\text{div}}} L_z(T_e) T_e^{0.5} Z_{\text{eff}}^{-0.3} dT_e \right) \\
 A_{\text{wetted}} = 2\pi N_{\text{div}} R \lambda_q F_{\text{exp}} \sin(\theta_{\text{div}}) \\
 F_{\text{exp}} = F_{\theta,\text{exp}} F_{\phi,\text{exp}} \\
 f_{\text{rad,div}} = q_{\text{rad,div}}/q_{||} \\
 \theta_{\text{div}} = \sin^{-1}\left[(1 + 1/\alpha_{\text{div}}^2) \sin \beta_{\text{div}}\right] \\
 \alpha_{\text{div}} = F_{\text{exp}} \sin\left(\tan^{-1}(B_{p,\text{mid}}/B_{T,\text{mid}})\right)
 \]

- **Typical assumptions:**
 - Number of Divertors: \(N_{\text{div}} = 2 \)
 - Heat Flux Width: \(\lambda_{\text{int}} = \lambda_{q,Eich} + 1.64S_{\text{Scarabosio}} \)
 - Flux Expansion: \(F_{\theta,\text{exp}} = 5; \ F_{\phi,\text{exp}} = 0.75 \)
 - Divertor Impurity Enrichment: \(\eta_{z,\text{div}} = n_{z,\text{div}}/n_{z,\text{core}} = 3 \)
 - Angle of Incidence Between Field Line and Target: \(\beta_{\text{div}} = 2.5^\circ \)

Costing Model in GASC

• Costing model adapted from Sheffield et al. 1986, updated by Sheffield et al 2016 (includes all core components and balance of plant)

• We Include cost of tritium required to run facility for 2 years in the capital cost
 – Initial Inventory + (Consumption – Breeding - loss/decay) at $30M/kg

• GASC configured to minimize the capital cost given a set of assumptions
Outline

• Introduction/Motivation
• GA systems code (GASC) and Compact Fusion Pilot Plant (CFPP)
• Impact of Power Exhaust and Confinement on CFPP cost
• Insights on Important R&D for CFPP Cost Attractiveness
• Summary
Technical Requirements for a Compact Fusion Pilot Plant (CFPP)

- At present, no agreed upon technical requirements for a CFPP
- My assumptions for those requirements:
 1) **Produce 200 MW-e** (provide sufficient headroom that if device doesn’t perform as projected, can still produce net electricity)
 2) **Produce (or purchase) its own tritium** (not required to produce tritium for follow-up facilities)
 3) **Produce power continuously for a 2-year calendar lifetime** (balance between demonstrating feasibility of fusion electricity and introducing significant set of materials issues) – can be pulsed
 4) **Capital costs to construct should be minimized**; operating costs is secondary consideration; COE not important at all
- Note that these assumptions significantly reduce or even eliminate potential impact of material lifetime and RAMI requirements
Analysis of Cost Drivers for a CFPP Indicate Importance of Both Physics and Technology Towards Attractiveness

- Independently vary assumptions to determine cost sensitivity to each parameter → tornado chart
 - Identifies risk/reward of potential R&D developments (or lack thereof)

- Aggressive baseline w/ $H_{98y2} = 1.6$, REBCO magnets, Plug-Bucked TF/CS

- Evident that physics and technology constraints are both critical to cost attractiveness

Tornado Chart

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Risks</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confinement Quality (H_{98y2})</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium Breeding Multiplier</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Efficiency</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divertor Heat Flux (MW/m²)</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutron Wall Loading (MW/m²)</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Length</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density Limit</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF Bucking Solution</td>
<td>Plug Bucked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnet Type</td>
<td>REBCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability Limit</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivity Multiplier</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline Case

- Estimated Capital Cost (B): 12210.16

Risks

- Net Power (MW): 200.0
- H_{98y2}: 1.6
- Magnet Type: HTS
- R (m): 3.7
- A: 3.0
- P (MW): 649.6
- PCD (MW): 33.9
- I_p (MA): 8.6
- B_T (T): 5.89
- B_{Tcoil} (T): 13.4
- a_{95}: 5.53
- I_{fs}: 0.76
- $f_{rad} (\%)$: 0.23
- $P_{oil/plh}$: 2.59
- TBR: 0.98
- γ: 1.8
- Capital Cost: 4215.3
- I_{case}: 4.2
- I_{case}: 12210.16
On its own, power exhaust capabilities provide modest leverage on cost attractiveness

- $q_{\text{div}} = 5-50 \text{ MW/m}^2$

However, cost is extremely sensitive to confinement quality, which is strongly linked to edge/divertor

- A new direction for R&D focused on integrated performance
 - Rather than just simply divertor performance

Cost Sensitivity Studies Suggest a Potential New Emphasis for Divertor Research
At $H_{98y2} = 1.0$, Divertor Heat Flux Capability Serves as A Primary Limitation on Device Size (and Capital Cost)

- For all H_{98y2}, device size must grow as q_{div}^{max} is decreased.
At \(H_{98y2} = 1.0 \), Divertor Heat Flux Capability Serves as A Primary Limitation on Device Size (and Capital Cost)

- For all \(H_{98y2} \), device size must grow as \(q_{div}^{\text{max}} \) is decreased.

- At \(H_{98y2} = 1.0 \), reducing \(q_{div}^{\text{max}} \) from 10 MW/m\(^2\) to 5 MW/m\(^2\) increases size (and cost) significantly:
 - \(R_o \): 5.8 m \(\rightarrow \) 7.2 m
 - Capital Cost: \(\uparrow \) 30%

\[\Delta t_{\text{pulse}} = 8 \text{ hours} \]
At $H_{98y2} = 1.0$, Divertor Heat Flux Capability Serves as A Primary Limitation on Device Size (and Capital Cost)

- For all H_{98y2}, device size must grow as $q_{\text{div}}^{\text{max}}$ is decreased.

- At $H_{98y2} = 1.0$, reducing $q_{\text{div}}^{\text{max}}$ from 10 MW/m2 to 5 MW/m2 increases size (and cost) significantly
 - R_o: 5.8 m \rightarrow 7.2 m
 - Capital Cost: \uparrow 30%

- Some advantage to increasing $q_{\text{div}}^{\text{max}}$ but only up to \sim 15 MW/m2
At $q_{\text{div}}^{\text{max}} = 10 \text{ MW/m}^2$, Increasing Confinement Leads to Significant Reduction in Device Size (and Capital Cost)

- Increasing H_{98y2} from $1.0 \rightarrow 1.5$ yields significant benefit
 - R_o: $5.8 \text{ m} \rightarrow 4.0 \text{ m}$
 - Capital Cost: $\downarrow 35$

- Similar improvements at all values of $q_{\text{div}}^{\text{max}}$

- Further improvements still possible at higher H_{98y2}

$\Delta t_{\text{pulse}} = 8 \text{ hours}$
Outline

• Introduction/Motivation

• GA systems code (GASC) and Compact Fusion Pilot Plant (CFPP)

• Impact of Power Exhaust and Confinement on CFPP cost

• Insights on Important R&D for CFPP Cost Attractiveness

• Summary
Analysis of Confinement and Divertor Assumptions Reveal Important R&D Needed to Reduce CFPP Capital Costs

No Divertor Improvement Approaches Level of Impact of Improving Confinement
Analysis of Confinement and Divertor Assumptions Reveal Important R&D Needed to Reduce CFPP Capital Costs

No Divertor Improvement Approaches Level of Impact of Improving Confinement

Degree of Heat Flux Spreading Most Sensitive Parameter → Serious Issue if \(S/\lambda_{q,Eich} = 0 \)
Analysis of Confinement and Divertor Assumptions Reveal Important R&D Needed to Reduce CFPP Capital Costs

- **Confinement Quality (H98)**: 1.9
- **Heat Flux Spreading (S/\lambda_q)**: 2.0
- **Poloidal Flux Expansion**: 10.0
- **Divertor Heat Flux (MW/m²)**: 50.0
- **Divertor Alignment (degrees)**: 1.0
- **Toroidal Flux Expansion**: 1.5

Key Points
- **H_{98y2} = 1.0**: No Divertor Improvement Approaches Level of Impact of Improving Confinement
- **Degree of Heat Flux Spreading**: Most Sensitive Parameter.
- **Serious Issue if S/\lambda_q = 0**: Flux Expansion, Tile Alignment, and Divertor Heat Flux Limit Less Important

Capital Cost (B) vs. Parameter

- Flux Expansion, Tile Alignment, and Divertor Heat Flux Limit
- Less Important
Analysis of Confinement and Divertor Assumptions Reveal Important R&D Needed to Reduce CFPP Capital Costs

At higher confinement, sensitivity to divertor parameters decreases

Same ordering importance for divertor parameters
Analysis of Confinement and Divertor Assumptions Reveal Important R&D Needed to Reduce CFPP Capital Costs

At $H_{98y2} = 1.9$, little sensitivity to divertor parameters and negligible benefit gained from better divertor performance.
Analysis of Confinement and Divertor Assumptions Reveal Important R&D Needed to Reduce CFPP Capital Costs

At $H_{98y2} = 1.9$, little sensitivity to divertor parameters and negligible benefit gained from better divertor performance.

$S/\lambda_q = 0$ not as serious an issue!!!
Summary: Takeaways from this Analysis for Power Exhaust Research and Development

- Power exhaust constraints are important at ITER-like confinement
 - However, limited (no?) pathways to reduce device size with improved power exhaust methods

- Achieving higher confinement offers significant benefits in reducing power exhaust requirements and device size
 - *Aggressive R&D program in core-edge integration is needed to develop robust scenarios along this line*

- Regardless of assumption on confinement, highest leverage R&D effort in divertor R&D should be maximizing heat flux spreading S/λ_q
 - Flux expansion and divertor target angle offer some, but only modest, improvements