

X-point radiation and detachment control at ASDEX Upgrade

<u>M. Bernert^{1*}</u>, F. Janky¹, B. Sieglin¹, F. Reimold², A. Kallenbach¹, M. Wischmeier¹, O. Kudlacek¹, W. Treutter¹, D. Brida¹, O. Février³, S. Henderson⁴, M. Komm⁵, the EUROfusion MST1 team⁶ and the ASDEX Upgrade Team⁷

¹Max Planck Institute for Plasma Physics, Garching, Germany, ²Max Planck Institute for Plasma Physics, Greifswald, Germany ³EPFL, Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland, ⁴CCFE, Culham Science Centre, Abingdon, OX14 3DB, Oxon UK, ⁵Institute of Plasma Physics of the CAS, Prague, Czech Republic See author lists of ⁶P. Labit et al 2010 Nucl. Eusion 50,086020 and ⁷H. Mayor et al 2010 Nucl. Eusion 50, 112014

See author lists of ⁶B. Labit et al 2019 Nucl. Fusion 59 086020 and ⁷H. Meyer et al 2019 Nucl. Fusion 59 112014

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

2. Real-time control of the radiator position

- An ELM-mitigated scenario
- 3. Other Control at AUG, TCV & DIII-D
- 4. Feasibility for future reactors?
- 5. Summary

- Detachment in metal machines achieved with seeding
- With the pronounced detachment of the outer divertor, an intense, localized radiator evolves close to the X-point.
- Most likely radiation condensation (MARFE-like)
- Radiated power fraction close to 100%

- Detachment in metal machines achieved with seeding
- With the pronounced detachment of the outer divertor, an intense, localized radiator evolves close to the X-point.
- Most likely radiation condensation (MARFE-like)
- Radiated power fraction close to 100%
- X-point radiation is:
- ➔ Stable scenario
- ➔ Existing with N or Ar seeding
- → Radiates up to 1/3 of the heating power
- ➔ Existing in a wide range of heating power:

```
P_{heat} [MW] = 2.5 - 20
P_{heat}/P_{LH} = 1 - 5
```


- Radiator reproduced by SOLPS [Reimold, NF 2015]
- Temperature reduction within confined region
 - $T_e < 5 eV$
 - D line radiation observed
 - \rightarrow Parallel temperature gradients inside confined region!

[F.Reimold, PSI 2014]

- Radiator reproduced by SOLPS [Reimold, NF 2015]
- Temperature reduction within confined region
 - $T_e < 5 eV$
 - D line radiation observed
 - \rightarrow Parallel temperature gradients inside confined region!

Why is it stable here?

- Highest flux expansion \leftrightarrow longest connection length to midplane
 - \rightarrow Low, sustainable parallel temperature gradients
 - \rightarrow Power flux driven parallel to magn. field
 - ightarrow Radiator acts as heat sink

Moves inside confined region with higher impurity concentration

Movement of the X-Point radiation peak

Tomographic reconstruction of X-point radiation movement (#30506, N seeding)

- Radiator forms close to X-point
- Moves further inside
- Up to 15cm inside confined region ($\varrho_{pol} \approx 0.99$) observed

Movement of the X-Point radiation peak

Tomographic reconstruction of X-point radiation movement (#30506, N seeding)

- Radiator forms close to X-point
- Moves further inside
- Up to 15cm inside confined region ($\varrho_{pol} \approx 0.99$) observed

Tracking using AXUV diodes (#32273, N seeding)

Actively influencing the location

 Location can be influenced by heating power or nitrogen seeding level →

Implemented real time control

Sensor: AXUV diodes

- SIO2 real time data acquisition
- 20ms median filtered data \rightarrow ELM filter

Actively influencing the location

• Location can be influenced by heating power or nitrogen seeding level

Implemented real time control

Sensor: AXUV diodes

- SIO2 real time data acquisition
- 20ms median filtered data \rightarrow ELM filter
- Peak detection by calculation of 1st moment

Actuator: N seeding

- PI controller
- Further possibilities: Ar seeding, Heating power

 \rightarrow

First application: Location & heating variation

- Detection within 5mm
- Power steps well compensated
- Controller unstable at:
 - Location around 4cm
 - Low heating power
 - \rightarrow Optimisation necessary
- Oscillation period (150-250ms) in time scale of seeding reaction time (~50ms)

First application: Location & heating variation

- Detection within 5mm
- Power steps well compensated
- Controller unstable at:
 - Location around 4cm
 - Low heating power
 - \rightarrow Optimisation necessary
- Oscillation period (150-250ms) in time scale of seeding reaction time (~50ms)

Scenario (in ELMy H-mode) stable for $P_{heat} = 2.5MW \approx P_{LH}$

4

Time (s)

2

0

0

6

First application: Deep penetration

- Control up to 10cm above X-point (and higher)
- Power trips also far inside well compensated

→ stable!

• Oscillations only around 4-6cm

First application: Deep penetration

- Control up to 10cm above X-point (and higher)
- Power trips also far inside well compensated

\rightarrow stable!

- Oscillations only around 4-6cm
- ELMs disappear for location higher than 7cm
 - reappear for lower locations

An ELM-free regime?

AXUV signal [a.u.] AXUV signal [a.u.] 4.10⁴ 5.10⁴ 0 NBI ECRH Prad outer div. (S2L0A15) Reproducible in other shots 10 [MM] 8 6 e.g. [Reimold, NF 2015] - Though without control less stable 600 Wmhd fGW 1.0 500 H98 R 400 300 0.5 200 100 density $[10^{19} \text{ m}^2]$. actual value . set value position [cm] edge 8 core 6 4 0 2 4 6 8 0 2 4 6 8 Time (s) Time (s)

•

An ELM-free regime?

- NBI ECRH Prad outer div. (S2L0A15) Reproducible in other shots 10 [MM] 8 eign 6•10⁴ e.g. [Reimold, NF 2015] - Though without control AXUV **2•10**⁴ less stable 600 Wmhd fGW 1.0 500 H98 R 400 300 0.5 200 100 density [10¹⁹ m²] actual value edge 10 8 position [cm] set value 8 core 6 6 Sudden change of 0 2 4 6 0 6 8 8 4 charateristics: Time (s) Time (s)
 - No clear ELM signature
 → ELM mitigated
 - Density reduced by 15%
 - W_{MHD} reducted by ~10%

- Characteristics between L- & H-mode (E_r well, filament characteristics)
- Increased divertor compression
- Reduced W content

•

How is the pedestal affected?

Attached \rightarrow partially detached:

- Temperature 🔰
- Density 🗖

Partially detached \rightarrow detached:

- Temperature 🔰
- Density

Detached \rightarrow ELM-free:

- Density 🔰
- Temperature gradient 🔰
 - → Temperature recovered further inwards

How is the pedestal affected?

Attached \rightarrow partially detached:

- Temperature 🔰
- Density 🗖

Partially detached \rightarrow detached:

- Temperature 🔰
- Density

Detached \rightarrow ELM-free:

- Density 🔰
- Temperature gradient 🔰
 - → Temperature recovered further inwards

All changed further inside than radiator → Pedestal stability is affected

How is the pedestal affected?

ASDEX Upgrade

Detachment control...

exists at:	sensors are:	controls with:
- AUG	- Divertor Thomson Scattering	- N seeding
- DIII-D	- Shunt currents	- Ar seeding
- TCV	- Bolometry	- D fuelling
- JET	- Langmuir probes	controlled state:
- EAST	- Thermocouples	- L-mode - onset of detachment
- C-Mod	- Filt. Cameras	- H-mode - partial detachment

Detachment control...

- AUG - Divertor Thomson Scattering - N seeding
- DIII-D - Shunt currents - Ar seeding
- TCV - Bolometry - D fuelling
- JET - Langmuir probes controlled state:
- EAST - Thermocouples - L-mode - onset of detachment
- C-Mod - Filt. Cameras - partial detachment

X-point radiator control allows for:

- Control of full detachment
- Buffer between re-attachment and radiative collapse

Summary

- X-Point radiating regime promising candidate for heat exhaust
 - Stable & controllable
 - Large buffer
 - Good performance
 - ELM mitigated
- Different paths of detachment control exist
 - X-Point radiator control first to control full detachment
 - Offers operational buffer between re-attachment and radiative collapse

\rightarrow Applicable for detachment control in reactors