Divertor & Exhaust Modelling of Stellarator Power Plants In the Framework of a Systems Code

<u>Felix Warmer</u>, Jorrit Lion, Holger Niemann, and the W7-X Team IR Team: F. Pisano, B. Cannas, M. Jakubowski, P. Drewelow, A.P. Sitjes and Y. Gao

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

EURO*fusion*

Motivation – Vision of a Stellarator Power Plant

Wendelstein 7-X: Prototype of a "Helical-Axis Advanced Stellarator" (<u>HELIAS</u>)

	W7X	H5B
Major radius	5.5 m	22 m
B _{avg.} on axis	< 3 T	< 5.9 T

Motivation – Exhaust as Integral Part of the Design

 $\mathsf{nT}\tau_\mathsf{E}$

1

/10⁻² nT $au_{
m F}/$

0.5

 $log(B^*)$

 $10^{-4} \text{ nT} \tau_{\text{F}}$

0

F. Warmer, et al., PPCF 58 (2016)

Device	Fusion Power	P _{SOL} /R [MW/m] (no radiation)
W7-X	-	~2
Intermediate Step Stellarator	500 MW (Q = 10)	~11
HELIAS 5-B	3000 MW	~27
ITER	400 MW	~20

Huge Parameter Space → Need to estimate Exhaust capability over a large design space !!

1.5

4

3

2

0

-1

-1

P/R

W7-AS

-0.5

log(P*)

- a) The Heuristic Model
- b) Model Validation

- a) 0-D Requirement Analysis
- b) Field Line Diffusion Modelling

- a) The Heuristic Model
- b) Model Validation

- a) 0-D Requirement Analysis
- b) Field Line Diffusion Modelling

Divertor Heat Load:

Heuristic Model: Y. Feng, et al., PPCF 53 (2011) F. Warmer, et al., FED 91 (2015)

Strikeline width and length

Heuristic Approach:

- 1) Diffusive cross-field transport
- 2) Helical geometry description
- 3) High radiation

$$\lambda_{int} = \sqrt{\chi_{\perp} \cdot \tau_{\parallel}} \qquad \Rightarrow \lambda_{int} = \sqrt{\chi_{\perp} \cdot \frac{\mathcal{L}_{X \to T}}{c_S}}$$

With the connection length:

 $\mathcal{L}_{X \to T} = \frac{\Delta}{\Theta}$

(Upgrade to 2-point model in future)

Heuristic Model: Y. Feng, et al., PPCF 53 (2011), F. Warmer, et al., FED 91 (2015)

Helical Geometry:

$$L_{D} = 2\pi R \cdot \frac{m}{n} \underbrace{\Theta}_{\text{lim}} F_{x}$$
Field line pitch
Angle between field
line and target

$$L_{T} = 2nL_{D}$$
2 plates per field
period (up/down)

$$q_{div} = \frac{P_{SOL}(1 - f_{rad})}{F_{x} \cdot 4\pi R \cdot m} \cdot \sqrt{\frac{c_{s}}{\chi_{\perp}} \cdot \Delta} \cdot \frac{\alpha_{\text{lim}}}{\sqrt{\Theta}} \cdot f_{asym}$$

Combining decription for strikeline width and length gives heuristic model:

- a) The Heuristic Model
- b) Model Validation

- a) 0-D Requirement Analysis
- b) Field Line Diffusion Modelling

From Infrared Measurement to Heat Load in W7-X

IR Team: Fabio Pisano, Barbara Cannas, Marcin Jakubowski, Peter Drewelow, Alepi Pugi Sitjes and Yu Gao

Very Large Database of Heat-Load Data:

 ✓ Two W7-X divertor campaigns 2017 & 18

- ✓ ~2500 discharges
- ✓ Across 4 magnetic configurations
- ✓ >100 TB Heat Load Data

Validation of the Heuristic Model with W7-X Data

Model Parameter		Experiment Equivalent for Validation		
0)	λ_{int}	Strikeline broadening		
Strikeline	$A_{eff}; L_T$	Wetted Area / Strikeline length	- Hea	at Load from IR cameras, Langmuir
	fa	Divertor asymmetry (Drifts)	J	
	с _s ; Т	Sound velocity in SOL	Lan	gmuir; Manipulator-Probes
ration Parameters	Δ	X-point to Target distance	Poi	ncaré Plot of Configuration
	$\mathcal{L}_{X \to T}$	Connection Length	Γ	
	Θ; b _r	Field Line Pitch	Fiel	d Line Tracing
Configu	α_{lim}	Angle btw. field line and target	J	10

EXAMPLE: Heat Load from Model and IR-Data

→ Future Task

- a) The Heuristic Model
- b) Model Validation

- a) O-D Requirement Analysis
- b) Field Line Diffusion Modelling

Generic Stellarator with undefined Divertor Concept

S.A. Henneberg, et al., NF 59 (2019)

Quasiisodynamic

Quasi-helical symmetric

Quasiaxisymmetric

- ✓ Optimised for very small bootstrap current
- ✓ Robust magnetic field
- \rightarrow Resonant Island Divertor Concept
- ✓ (tested in W7AS and now in W7X)

- "medium" <u>external</u> rotational transform to prevent disruptions
- High(!) bootstrap current to add rot. transf.
- → Resonant Island Divertor not possible
- Current-resilient divertor concept needed !

NO Divertor Concept \rightarrow NO Model

\rightarrow Reverse the Question:

e.g. "Which wetted area do we need to achieve feasible divertor heat loads?"

Allows to:

 \rightarrow Define requirements

→ Define limits (e.g. BB space, which impacts TBR)

- a) The Heuristic Model
- b) Model Validation

- a) 0-D Requirement Analysis
- b) Field Line Diffusion Modelling

Field Line Equation:

$$\frac{\mathrm{d}\vec{r}\left(l\right)}{\mathrm{d}l} = \frac{\vec{B}\left(\vec{r}\right)}{\left|\vec{B}\left(\vec{r}\right)\right|}$$

Add diffusive component to field lines:

$$p(x) = \frac{1}{\lambda} \exp\left(\frac{-x}{\lambda}\right)$$

$$r \in \left[0, \sqrt{\frac{12D_{\perp}\lambda}{\upsilon}}\right]$$

S.A. Bozhenkov, et al., FED 88 (2013)

Potential Workflow for a New Divertor Configurations

✓ Heuristic island divertor model provides a good basis for systems codes

✓ 100 TB of Heat Load Data from two W7-X Divertor campaigns available

- Validation of each individual parameter possible (!)
- Not yet started, lack of resources

✓ Systems Codes aspire to cover a wide range of stellarator configurations

- Currently no divertor concept for Quasi-Axisymmetric configurations
- Provide 0-D requirements analysis by reversing the question
- <u>Field line diffusion method</u> to assess new configurations

Outlook:

• A lot of work to do Master / PhD Projects ??