Additive manufacturing of tungsten by means of laser powder bed fusion for plasma-facing component applications

Alexander v. Müllera,b, C. Anstättc, M. Baldena, M. Binderc, B. Buschmannb,c, B. Curzadda,b, D. Dorow-Gerspachd, P. Fanellie, S. Giominie, R. De Lucae, R. Neua,b, G. Schlickc, F. Viviof, J.H. Youa

a Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany
b Technische Universität München, 85748 Garching, Germany
c Fraunhofer IGCV, 86153 Augsburg, Germany
d Forschungszentrum Jülich, 52425 Jülich, Germany
e University of Tuscia, 01100 Viterbo, Italy
f Tor Vergata University of Rome, 00133 Rome, Italy

3rd IAEA Technical Meeting on Divertor Concepts
04 November 2019, Vienna, Austria

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Plasma-facing components in fusion devices

- According to our present understanding exhaust of power and particles in a future magnetic confinement nuclear fusion device will be handled by a **poloidal divertor**

DEMO

Divertor target

- **PFM: Tungsten (W)**
 - Low sputtering yield
 - Low tritium retention
 - Low vapour pressure
 - High melting point
 - ...

\[
\dot{Q} \sim 10 - 20 \frac{MW}{m^2}
\]

- **Heat sink: Copper (Cu) alloy or W-Cu composite materials**
 - High thermal conductivity
 - Favourable mechanical properties

- **Water: T \sim 150^\circ C**

[T.R. Barrett et al., Fusion Engineering and Design, 2016]
What is additive manufacturing?

- **Additive manufacturing (AM):**
 - three-dimensional objects are created by sequential layerwise deposition of material under computer control
 - objects with more or less arbitrary shape can be produced

- **Laser powder bed fusion (LPBF)**
 of tungsten (W)

[K. Kempen et al., Solid Freeform Fabrication Symposium, 2011]

[https://www.ntnu.edu/ivb/additive-manufacturing-laboratory, 06.06.2018]
Process parameters

Powder

⇒ good flowability required
⇒ spheroidised powder

SEM image of spheroidised pure W powder (15-45 µm)

Laser parameters

⇒ laser power \(P \sim 400 \text{ W} \)
⇒ laser focus \(\sim 100 \text{ µm} \)
⇒ scanning speed \(v \sim 500 \text{ mm/s} \)
⇒ layer thickness: \(t \sim 40 \text{ µm} \)
⇒ scan line spacing: \(s \sim 80 \text{ µm} \)

energy density:
\[
E = \frac{P}{v s t} \text{ [J/mm}^3\text{]}\]

⇒ scanning strategy
LPBF of W with substrate preheating

- Typical measure in order to mitigate defects in laser beam melted material
 ⇒ preheated substrate

- Experiments performed with preheated W substrate plates
 ⇒ up to 1000°C
LPBF of W with substrate preheating

- Fabrication of cube shaped samples for parametric studies (*edge length 10 mm*)

- Example for more complex W parts ⇒ Honeycomb structures
LPBF of W with substrate preheating

- Experiments performed with W preheated substrate plates
 \[\Rightarrow 600^\circ\text{C}, 800^\circ\text{C} \text{ and } 1000^\circ\text{C} \]

- Manufacturing parameter studies (laser power, scanning speed, ...)

Exemplary microsection:
- \(P = 400 \text{ W}, v = 510 \text{ mm/s}, T = 1000^\circ\text{C} \)

Material with relative mass density \(\sim98\%\) produced directly by means of laser powder bed fusion
LPBF of W with substrate preheating

- Experiments performed with W preheated substrate plates ⇒ 600°C, 800°C and 1000°C
- Manufacturing parameter studies (laser power, scanning speed, ...)

Substrate preheating (above DBTT of tungsten) does not mitigate crack defect formation during selective laser beam melting process
Issues in LPBF

- Laser-material interaction:
 ⇒ *Rapid* heating, melting & solidification

- Temperature gradients:
 ⇒ $\sim 10^2 - 10^4$ K/mm between center of the melt pool and the solid-melt interface

- Cooling rate during solidification: $> 10^4$ K/s

- Potential **defects** in laser beam melted material:
 ⇒ Porosity
 ⇒ Residual stresses
 ⇒ Cracks due to the high temperature gradients between melt pool and surrounding solid
 ⇒ Balling ⇒ material fails to wet the underlying substrate

LPBF of W – Influence of powder morphology

- Spheroidised W powder

- Polygonal W powder

Junction of 3 thin W walls
Tungsten-copper composite materials

- **W-Cu composite materials** currently of interest with regard to plasma-facing component heat sink applications

 - High thermal conductivity
 - High strength at elevated temperatures
 - Tailoring of macroscopic material properties possible

 - No mutual solubility
 - Wettability W – liquid Cu
 - Constituents readily available

W-Cu (60/40 wt.%) composite metal manufactured by means of Cu melt infiltration

Additive manufacturing of W beneficial for W-Cu composite material design

[A. v. Müller et al., Fusion Engineering and Design, 2017]
Tailored W-Cu composite structures

W-Cu composite structure realised through Cu liquid melt infiltration of additively manufactured W part

Possibility to realise tailored/optimised W-Cu composite structures for plasma-facing component application
Tailored W-Cu composite structures

- How should a W-Cu material distribution be in a plasma-facing component?

- Development of a FE code for optimisation of W-Cu composite material distribution developed

- FE implementation: Each element in the design domain is assigned a design variable that may vary continuously between 0.0 – 1.0 and specifies the volume fraction of tungsten

- Objective: Minimisation of the peak *von Mises equivalent stress*

[Image: Diagram of W-Cu composite structure with design variables and optimization parameters.]

[B. Curzadd, Nuclear Fusion, 2019]
Tailored W-Cu composite structures

Material Distribution

Stress Field

$Q_N = 10 \text{ MW/m}^2$

$T_0 = 650 \, ^\circ\text{C}$

Reference: full-W domain
Tailored W-Cu composite structures indicate high potential for plasma-facing component performance enhancement.

Simulation results need to be translated into manufacturable designs.

Material Distribution

Stress Field

Peak Stress

576.1 MPa
-85.7%
82.2 MPa

Final Avg. Composition

60.5% W
39.5% Cu

ΔT_{max}

-112°C

Reference: full-W domain

Q_N = 10 MW/m²
T_0 = 650 °C
Tailored W-Cu composite structures indicate high potential for plasma-facing component performance enhancement.

Simulation results need to be translated into manufacturable designs.
LPBF of W – PFC mock-up manufacturing

- Additively manufactured LPBF W on W tiles

- Tailored W-Cu material distribution optimised design

 CAD model of lattice structure deduced from W-Cu material distribution optimisation

 additively manufactured LPBF W

 W honeycomb structure

 LPBF W preforms fabricated successfully
W lattice structures for DEMO limiters

- Limiters in DEMO for transient events: plasma ramp up and down/U-VDE/D-VDE/H-L transitions/all events characterised by a sudden loss of plasma confinement

- Porous W as possible limiter material:
 \[\Rightarrow \text{structures with defined combination of mass density, specific heat and thermal conductivity} \]

\[\alpha = \frac{\lambda}{\rho \ c_p} [m^2/s] \quad \text{thermal diffusivity} \]

- Possible solution:
 \[\Rightarrow \text{additively manufactured W lattice structures} \]
W lattice structures for DEMO limiters

- W lattice structure samples manufactured by means of LPBF

- Microscopic top view on W lattice structure
Conclusions

- By means of laser powder bed fusion (LPBF) pure W with relative mass density ~98% can be consolidated.

- High temperature processing
 ⇒ LPBF process with elevated substrate temperatures (up to 1000°C)

- Especially material consolidated with high relative mass densities shows formation of microcrack defects.

- Strong influence of the raw powder material on the quality of the additively manufactured material/part.

- Additive manufacturing of “complex“ W structures is feasible
 ⇒ Tailored W-Cu composite structures for plasma-facing component heat sink application ⇒ Mock-up manufacturing for high heat flux testing
 ⇒ Porous W lattice structures for limiter applications

Many thanks for your attention!