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[T.R. Barrett et al., Fusion  Engineering  

and  Design, 2016] 

 According to our present understanding exhaust of power and particles in a future 

magnetic confinement nuclear fusion device will be handled by a poloidal divertor 

DEMO Divertor target 

Water: T ~ 150°C 

Heat sink: Copper (Cu) alloy or W-Cu composite materials 

⇛ High thermal conductivity 

⇛ Favourable mechanical properties 

PFM: Tungsten (W) 

⇛ Low sputtering yield 

⇛ Low tritium retention 

⇛ Low vapour pressure 

⇛ High melting point 

... 



 Additive manufacturing (AM): 

⇛ three-dimensional  objects  are  created  by sequential 

layerwise deposition of material under computer control 

⇛ objects with more or less arbitrary shape can be produced 

What is additive manufacturing? 

 Laser powder bed fusion (LPBF) 

of tungsten (W) 

[K. Kempen et al., Solid Freeform Fabrication Symposium, 2011] 

[https://www.ntnu.edu/ivb/additive-

manufacturing-laboratory, 06.06.2018] 
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Process parameters 

SEM image of spheroidised 

pure W powder (15-45 µm) 

⇛ good flowability required 

⇛ layer thickness: t ~ 40 µm 

⇛ laser power P ~ 400 W 

⇛ scan line spacing: s ~ 80 µm 

⇛ scanning speed v ~ 500 mm/s 

⇛ scanning strategy 

Powder Laser parameters 

energy density: 

⇛ spheroidised powder ⇛ laser focus ~ 100 µm 

s 
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LPBF of W with substrate preheating 

Preheated W substrate plate 

before material manufacturing 

 Experiments performed with preheated W substrate plates 

⇛ up to 1000°C 

LPBF processing of W with 

preheated substrate 

 Typical measure in order to mitigate defects in laser beam melted material 

⇛ preheated substrate 

W substrate 
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LPBF of W with substrate preheating 

 Fabrication of cube shaped samples for parametric 

studies (edge length 10 mm) 
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 Example for more complex W parts 

⇛ Honeycomb structures 

1000 µm 

One laser 

melting track 



LPBF of W with substrate preheating 

 Manufacturing parameter studies (laser power, scanning speed, ...) 

Exemplary microsection: 

P = 400 W, v = 510 mm/s, 

T = 1000°C 

2 mm 

 Experiments performed with W preheated substrate plates 

⇛ 600°C, 800°C and 1000°C 

3rd IAEA Technical Meeting on Divertor Concepts 04.11.2019 6 

Material with relative mass density ~98% produced directly by means of 

laser powder bed fusion 



LPBF of W with substrate preheating 

 Manufacturing parameter studies (laser power, scanning speed, ...) 

 Experiments performed with W preheated substrate plates 

⇛ 600°C, 800°C and 1000°C 

Substrate preheating (above DBTT of tungsten) does not mitigate crack defect 

formation during selective laser beam melting process 

100 µm 

Exemplary microsection: 

P = 400 W, v = 510 mm/s, 

T = 1000°C 
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Issues in LPBF 

 Laser-material interaction: 

⇛ Rapid heating, melting & solidification 

 Temperature gradients:  

⇛ ~ 102 – 104 K/mm between center of the 

melt pool and the solid-melt interface 

 Cooling rate during solidification: > 104 K/s 

 Potential defects in laser beam melted material: 

⇛ Porosity 

⇛ Residual stresses 

⇛ Cracks due to the high temperature gradients between 

melt pool and surrounding solid 

⇛ Balling ⇛ material fails to wet the underlying substrate 

200 µm 

porosity 

crack 

[M. Rombouts, doctoral thesis, KU Leuven, 2006] 
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LPBF of W – Influence of powder morphology 
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 Spheroidised W powder 

 Polygonal W powder 

Junction of 

3 thin W walls 



Tungsten-copper composite materials 

 W-Cu composite materials currently of interest with regard to plasma-facing 

component heat sink applications 

Additive manufacturing of W beneficial for W-Cu composite 

material design 

⇛ No mutual solubility 

⇛ Wettability W – liquid Cu 

⇛ Constituents readily available 

⇛ High thermal conductivity 

⇛ High strength at elevated temperatures 

⇛ Tailoring of macroscopic material properties possible 

W-Cu (60/40 wt.%) composite 

metal manufactured by 

means of Cu melt infiltration 

[A. v. Müller et al., Fusion Engineering and Design, 2017] 
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Tailored W-Cu composite structures 

W-Cu composite structure realised through Cu liquid melt infiltration of 

additively manufactured W part 

W substrate 

⇛ plasma-facing 

material 

Parallel  Perpendicular 

W 

Cu 

500 µm 

Possibility to realise tailored/optimised W-Cu composite structures for 

plasma-facing component application 

500 µm 
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[A. v. Müller et al., Nuclear Materials and Energy, 2019] 



Tailored W-Cu composite structures 

 FE implementation: Each element in the design 

domain is assigned a design variable that may vary 

continuously between 0.0 – 1.0 and specifies the 

volume fraction of tungsten 

 Objective: Minimisation of the peak von Mises 

equivalent stress 

 Development of a FE code for optimisation of 

W-Cu composite material distribution developed 

 How should a W-Cu material distribution be in a 

plama-facing component? 
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[B. Curzadd, Nuclear Fusion, 2019] 



W 

Cu 

Material Distribution Stress Field 

QN = 10 MW/m2 

T0 = 650 °C 

Tailored W-Cu composite structures 

Reference: full-W domain 
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W 

Cu 

Peak Stress 

Final Avg. 

Composition 

60.5% W 

39.5% Cu 

576.1 MPa 

82.2 MPa 

-85.7% 

Material Distribution Stress Field 

QN = 10 MW/m2 

T0 = 650 °C 

Tailored W-Cu composite structures 

Tailored W-Cu structures indicate high potential for plasma-facing component 

performance enhancement 

-112°C 

∆Tmax 

Reference: full-W domain 

Simulation results need to be translated into manufacturable designs 
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LPBF of W – PFC mock-up manufacturing 
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 Additively manufactured LPBF W on W tiles  

 Tailored W-Cu material distribution optimised design 

LPBF W preforms 

fabricated 

successfully 

CAD model of lattice structure deduced from 

W-Cu material distribution optimisation 

W tiles 
additively 

manufactured 

LPBF W 

W honeycomb 

structure 

CAD model 
2 mm 



[F. Maviglia et al., ISFNT-14, 2019] 

W lattice structures for DEMO limiters 

 Porous W as possible limiter material:  

⇛ structures with defined combination of mass 

density, specific heat and thermal conductivity 

 Limiters in DEMO for transient events: plasma ramp up 

and down/U-VDE/D-VDE/H-L transitions/all events 

characterised by a sudden loss of plasma confinement 

 Possible solution: 

⇛ additively manufactured W lattice structures 
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thermal diffusivity 



W lattice structures for DEMO limiters 

 Microscopic top view on W lattice structure 
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CAD model 

CAD model 

 W lattice structure samples manufactured by means of LPBF 

Microcracks 
1 mm 



Conclusions 

 Especially material consolidated with high relative mass densities shows formation of 

microcrack defects 

 High temperature processing 

⇛ LPBF process with elevated substrate temperatures (up to 1000°C) 

 By means of laser powder bed fusion (LPBF) pure W with relative mass 

density ~98% can be consolidated 

 Additive manufacturing of “complex“ W structures is feasible 

⇛ Tailored W-Cu composite structures for plasma-facing component heat sink 

application  Mock-up manufacturing for high heat flux testing 

⇛ Porous W lattice structures for limiter applications 

Many thanks for your attention! 
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 Strong influence of the raw powder material on the quality of the additively 

manufactured material/part 




