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Motivation: compatibility of detached divertor plasmas with

RMPs for ELM control

m Control of divertor loads is required for next
step magnetic fusion devices .
— detached plasma operation S

m Resonant magnetic perturbations
(RMPs) will be used for ELM control in

ITER m Staged Approach: Pre-Fusion Power

Operation (PFPO): PgoL = 30 MW,

m A 3D plasma edge model Bt/lp =1.8T/SMA, Gos = 3

(EMCS3-EIRENE) is required to analyze the

. : m Focus on n = 3 RMP field with coil
impact on divertor performance

phasing optimized for ELM control

W



Outline

1 EMCS-EIRENE: 3D model for the (steady state) plasma boundary

2 Plasma response effects on the magnetic topology

3 Divertor performance with RMP application

4 Sensitivity on assumptions within the plasma response model



EMC3-EIRENE extends the traditional (axisymmetric)

framework for divertor perfomance analysis to 3 dimensions

m Magnetic geometry is input for plasma boundary modeling

Model parameters Simulation data

Magnetic field Densit
(equilibrium) 2D Plasma ey
boundary model Temperature
LIV CEE e Divertor loads
_* SOLPS-4.3 / SOLPS-ITER »
Plasma G Neutral gas

m Boundary plasma is determined by particle, momentum, and energy balances




EMC3-EIRENE extends the traditional (axisymmetric)

framework for divertor perfomance analysis to 3 dimensions

m Magnetic geometry is input for plasma boundary modeling and can include
plasma response effects (MARS-F, ...)

Model parameters Simulation data

Magnetic field
(equilibrium 3D Plasma

*+ RMPs) boundary model

Divertor design

) EMC3-EIRENE

Plasma G Neutral gas

m Boundary plasma is determined by particle, momentum, and energy balances
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2 Plasma response effects on the magnetic topology



Resistive single fluid calculations (MARS-F) show strong

screening of resonant field components

Vacuum RMP field
+

m |deal magneto-hydrodynamics (MHD)
suggests screening of resonant fields
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Resistive single fluid calculations (MARS-F) show strong

screening of resonant field components

+ Plasma response (MARS-F)

m Ideal magneto-hydrodynamics (MHD) " - ”
suggests screening of resonant fields . .
m Strong screening response is recoved in o :
resistive single fluid (MARS-F) 2 \ “
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Resistive single fluid calculations (MARS-F) show strong

screening of resonant field components

+ Plasma response (MARS-F)
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Plasma response affects size and radial connection of

magnetic footprint

Unperturbed configuration
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Plasma response affects size and radial connection of

magnetic footprint

Vacuum RMP field
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Plasma response affects size and radial connection of

maghnetic footprint

Vacuum RMP field

m Perturbed separatrix guides field lines from the bulk
plasma to divertor targets
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Plasma response affects size and radial connection of

maghnetic footprint

+ Plasma response (MARS-F)

m Perturbed separatrix guides field lines from the bulk
plasma to divertor targets
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m Screening: reduced radial extent of perturbed SOL
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Plasma response affects size and radial connection of

maghnetic footprint

+ Plasma response (MARS-F)

m Perturbed separatrix
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m But large non-axisymmetric footprint from field
amplification in competition with screening
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3 Divertor performance with RMP application



EMC3-EIRENE simulations show heat flux peaking correlated

with radial connection of perturbed field lines

m Model parameters: Igas = 3 - 1025, Pso. = 30MW, D, = 0.3m®s™ ', x. = 1m?s™"
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EMC3-EIRENE simulations show heat flux peaking correlated

with radial connection of perturbed field lines

m Model parameters: Iges = 3 - 10257 ", Pso. = 30MW, D, = 0.3m?s™ ", x. = 1m?s™"

Vacuum RMP field + Plasma response
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EMC3-EIRENE simulations show heat flux peaking correlated

with radial connection of perturbed field lines

m Model parameters: Iges = 3 - 10257 ", Pso. = 30MW, D, = 0.3m?s™ ", x. = 1m?s™"

60Reference Vacuum RMP field + Plasma response

w IS v
S S S
o

N
S5

=
o

Distance along target [cm]

0

[ 20 40 60 80 100 120 0 60 80
Toroidal Angle [deq] Toroidal Angle [deq] Toroidal Angle [deq]

0 20 40

m RMPs: earlier onset of detachment in original strike zone (OSZ)



EMC3-EIRENE simulations show heat flux peaking correlated

with radial connection of perturbed field lines

m Model parameters: Igas = 3 - 1025, Pso. = 30MW, D, = 0.3m®s™ ', x. = 1m?s™"

Vacuum RMP field
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m RMPs: earlier onset of detachment in original strike zone (OSZ)

m Far SOL remains attached with heat flux peaking away from OSZ



EMC3-EIRENE simulations show heat flux peaking correlated

with radial connection of perturbed field lines

m Model parameters: Igas = 3 - 1025, Pso. = 30MW, D, = 0.3m®s™ ', x. = 1m?s™"

Vacuum RMP field + Plasma response
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60

next: evaluate OSZ and compare to far SOL
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m RMPs: earlier onset of detachment in original strike zone (OSZ)

m Far SOL remains attached with heat flux peaking away from OSZ



RMPs: significantly different exhaust characteristics at

primary and secondary strike locations

m Divertor performance is evaluated
with gas puff (density) scan

m Particle flux roll-over found in
reference (unperturbed) configuration

5
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RMPs: significantly different exhaust characteristics at

primary and secondary strike locations

m Divertor performance is evaluated
with gas puff (density) scan

m Particle flux roll-over found in
reference (unperturbed) configuration

m Early detachment of primary
perturbed strike location
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RMPs: significantly different exhaust characteristics at

primary and secondary strike locations

m Divertor performance is evaluated 5| m=—_Unperturbed SP
. . e Primary SP (RMPs)
with gas puff (density) scan = Secondary SP (RMPs)

IS

m Particle flux roll-over found in
reference (unperturbed) configuration

w

m Early detachment of primary
perturbed strike location

=, =3" 1022571

Particle load [1022> m~2 s71]

m Secondary perturbed strike location
remains attached M ; 3 i : 5 7
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Leading role of T; facilitates parametrization of characteristic

curves for divertor operation

m Boundary condition sets link

i thermal load
between particle and heat loads:

S S

— _ r
ST Q g + €y

‘\_/ from surface recombination



Leading role of T; facilitates parametrization of characteristic

curves for divertor operation

m Boundary condition sets link
between particle and heat loads:

S S

— — I
ST, Q qQr + ¢€ly

m Power losses in the divertor provide
link to heat flux from bulk plasma:

ar = (1 — feoal) - q - B:/By - sinv

=q




Leading role of T; facilitates parametrization of characteristic W

curves for divertor operation

m Boundary condition sets link
between particle and heat loads:

DIII-D (SOLPS-EIRENE) [Sang] JET (EDGE2D-EIRENE) [Jarvinen]
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1= fooo(Te) = (A (1 &7/ T)"
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Leading role of T; facilitates parametrization of characteristic W

curves for divertor operation

m Boundary condition sets link
between particle and heat loads:
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Leading role of T; facilitates parametrization of characteristic

curves for divertor operation

m Boundary condition sets link
between particle and heat loads:

S S
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(ol + sl_t

m Power losses in the divertor provide
link to heat flux from bulk plasma:

ar = (1 - fcool) - q- Bt/Bu'

=q

sinv

m Parametrization of f.y:

1= fooo(Te) = (A (1 &7/ T)"
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Qualitative explanation by splitting of upstream heat flux and

different radial field line connections

—— Unperturbed SP

m Toy model captures roll-over of
unperturbed SP

Heat load [MW m~2]

Particle load [102> m~2 s71]



Qualitative explanation by splitting of upstream heat flux and W

different radial field line connections

—— Unperturbed SP

—— Primary 5P (RMPs) m Toy model captures roll-over of
——

—— Secondary SP (RMPs)

______ mmm T TTIINR unperturbed SP
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Particle load [102> m~2 s71]

Detached divertor conditions in RMP H-mode plasmas in ITER



Qualitative explanation by splitting of upstream heat flux and

different radial field line connections

—— Unperturbed SP

— Primary SP (RMPs) m Toy model captures roll-over of
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Qualitative explanation by splitting of upstream heat flux and ¥

different radial field line connections

—— Unperturbed SP

— Primary SP (RMPs) m Toy model captures roll-over of
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Qualitative explanation by splitting of upstream heat flux and ¥

different radial field line connections
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different radial field line connections
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Qualitative explanation by splitting of upstream heat flux and

different radial field line connections

—— Unperturbed SP

—— Primary 5P (RMPs) m Toy model captures roll-over of
—— Secondary SP (RMPs) unperturbed SP
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m Higher T; consistent with deeper radial connection from secondary SP to higher T,
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4 Sensitivity on assumptions within the plasma response model



Footprint size is sensitive to rotation profile in MARS-F

m Amplification competes with screening, and depends on assumed
rotation profile
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Footprint size is sensitive to rotation profile in MARS-F

m Amplification competes with screening, and depends on assumed
rotation profile
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Footprint size is sensitive to rotation profile in MAR

m Amplification competes with screening, and depends on assumed
rotation profile

oT
m Significant extension of footprint possible from strong amplification
near separatrix
— Low rotation High rotation
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Footprint size is sensitive to rotation profile in MAR

m Amplification competes with screening, and depends on assumed
rotation profile

oT
m Significant extension of footprint possible from strong amplification
near separatrix
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Footprint size is sensitive to rotation profile in MAR

m Amplification competes with screening, and depends on assumed

m Significant extension of footprint possible from strong amplification

rotation profile

near separatrix

Optimal coil phasing for ELM
control may not be optimal
for divertor operation at full
power — rotate RMPs
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Optimal ELM control phasings imply large footprint size

m ELM control optimized based on displacement near X-point

Low rotation High rotation

o
[N]
=1

=
=)
=3

m]

\/\/\/\

Lower row phase [deg]

-200 -150 -100 -50 0 50 100 150 200
Toroidal Angle [deg] 50

m Footprint size s: max. distance from original strike point with connection to WV < 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300

140

80

60

40

20

0
Upper row phase [deq] Upper row phase [deq]

m Reduced divertor closure at s = 70 cm (soft limit), and extension beyond dedicated
high heat flux region (hard limit at full power?) — reliable prediction of plasma
response required!
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Conclusions

1 An earlier transition to detachment is found at the OSZ with RMPs while the far SOL
non-axisymmetric SP remains attached

— high T; at secondary SP is problematic for extrinsic impurities required
for dissipation at full power

2 Non-axisymmetric particle and heat loads during RMP application are sensitive to the
plasma response (in particular the toroidal rotation used in MARS-F)

— Optimal coil phasing for ELM control not optimal for divertor operation?
(rotation of RMPs possible but should be avoided)

— Reliable predictions for plasma response models required!
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Plasma response determines radial extent of perturbed SOL

m Screening response: smaller, non-overlapping island chains
— reduced radial extent of perturbed SOL

Vaccum RMP field + Plasma response (MARS-F)
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Plasma response determines radial extent of perturbed SOL

m Screening response: smaller, non-overlapping island chains
— reduced radial extent of perturbed SOL

m Perturbed SOL.: field lines connect to divertor targets

Vaccum RMP field + Plasma response (MARS-F)
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Plasma response determines radial extent of perturbed SOL

m Screening response: smaller, non-overlapping island chains
— reduced radial extent of perturbed SOL

m Perturbed SOL.: field lines connect to divertor targets
— higher edge temperature can be sustained with RMP screening

Vacuum RMP field + Plasma response (MARS-F)
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Heat loads may occur far from original strike zone depending
on plasma response

m Model parameters: ges = 3 - 10257, Pegge = 30MW, D, = 0.3m?s™", x, = 1m?s™"

Reference Vacuum approximation MARS-F (slow rotation) = MARS-F (fast rotation)
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m Optimal coil phasing for ELM control may not be optimal for divertor operation

Detached divertor conditions in RMP H-mode plasmas in ITER



Screening competes with field amplification near separatrix

Vaccum RMP field Plasma response RMP field
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m MARS-F plasma response includes both screening of resonances within the bulk
plasma and amplification near the separatrix



Absence of power and momentum losses confirm: secondary

SP (RMPs) remains attached

m Evaluate power and momentum losses with respect to divertor entrance:

1 - fcool - Qt/q (fot.

Power losses

A =1.09 +/-0.02

T =3.63 +/- 0.62
3 0.1 o=2.07 +/- 0.45 1
o
.01 E
0.0 Unperturbed SP s
Primary SP (RMPs) s
Secondary SP (RMPs) s
fit ——
0.001 ‘ pest It
0.1 1 10 100

Target temperature [eV]

- fm()m

0.1

0.01

0.001

(tot.) , . (tot.)

1 — foom = P; /Py

Momentum losses

A=0.92+/-0.02
T =091 +/-0.14

Primary SP (RMPs) s
Secondary SP (RMPs) s
best fit ——

o=154+/-024 7

Unperturbed SP s 1

0.1 1 10
Target temperature [eV]

100
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What are the implications of 2ndary SP for divertor operation

m Initially even weaker T; scaling
than traditional attached
conditions (T; ~ ;') because of
increasing g
— increasing q; observed at EAST
(J. Li, Nature Physics 9 817 (2013)

m High T; increases sputtering on
tungsten plates

m Field lines connect deeper into
the plasma
— even higher T, at full power

Target temperature (el.) [eV]

102 I~~a === Unperturbed SP
= Primary SP (RMPs)
Te~ ;08 = Secondary SP (RMPs)
101 B
10°
1022 1623 1024

Particle load [m=2 s71]

m From divertor entrance (X-point) to targets: shorter connection length
— less dissipation possible (even if T; can be brought down)

o
=)

Upstream heat flux (mapped to target) [MW m~2]
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Linearization of S, provides stabilization at low divertor

temperatures

m First order Taylor expansion allows more accurate treatment of T, dependence:

S0~ sultt) + (70 -7 )

U=



Linearization of S, provides stabilization at low divertor

temperatures

m First order Taylor expansion allows more accurate treatment of T, dependence:

Se(é) ~ See<T<§j_1)> + (Té/) _Téf—1) ) %STeee

76

m Source decomposition (linearization)
can be stabilizing if Sge1 < 0:

See ~ | Seed + Te - Seef

explicit method/ ;

implicit method



Linearization of S, provides stabilization at low divertor

temperatures

m First order Taylor expansion allows more accurate treatment of T, dependence:

Se(é) ~ See<T<§j_1)> + (Té/) _Téf—1) ) %STeee
ol

m Source decomposition (linearization)

Averaged Temperature at inner target

can be stabilizing if Sge1 < 0: 10 Epr—
8 r See linearization
> 6
See ~ [Seed + Te - Seet > a4l
-
/‘ 2}
explicit method 0 ‘ ‘ ‘
0 50 100 150 200

implicit method

Iteration number



EMC3: A 3D fluid model for the (steady state) edge plasma

Particle balance (n: plasma density) Y. Feng et al. PPCF 59 (2017) 034006
V- [nue, — Dieie; -Vn] =S
D, : anomalous cross-field diffusion, Sp: ionization of neutral particles
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EMC3: A 3D fluid model for the (steady state) edge plasma

Particle balance (n: plasma density) Y. Feng et al. PPCF 59 (2017) 034006

V- [nue, — Dieie; -Vn] =S

Momentum balance (uj: fluid velocity parallel to magnetic field lines)
A\ [m,nuﬁeu — 17”9“6” -VUH —D,e,e, -V (m,-nuH)] = 7eH -Vn(Te + T/) + Sm

n, = m;nD, : anomalous cross-field viscosity, Sm: interaction (CX) with neutral particles
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EMC3: A 3D fluid model for the (steady state) edge plasma

Particle balance (n: plasma density) Y. Feng et al. PPCF 59 (2017) 034006

V- [nue, — Dieie; -Vn] =S

Momentum balance (uj: fluid velocity parallel to magnetic field lines)

V- [m,-nuﬁeu — njeje,-Vu, — Die e -V (m,-nuH)] = —e-Vn(Te+T;) + Sm

Energy balance (Te, T;: electron and ion temperature)

5
AV |:§ Te (nuHeH — D e e Vn) — (neeHeH + Xenej_ej_) VTe:| = +K(T/7 Te) + See + Se,imp

5
V- |:§T, (nuHe” — D e e, 'Vn) — (K,,-eHeH + X,-neleL) VT,:| —K(T, — Te) + Se,'

Xe, Xi: anomalous cross-field transport Se...: interaction with neutral particles and impurities
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EMC3: A 3D fluid model for the (steady state) edge plasma

Particle balance (n: plasma density) Y. Feng et al. PPCF 59 (2017) 034006

V- [nue, — Dieie; -Vn] =S

Momentum balance (uj: fluid velocity parallel to magnetic field lines)

V- [m,-nuﬁeu — njeje,-Vu, — Die e -V (m,-nuH)] = —e-Vn(Te+T;) + Sm

Energy balance (Te, T;: electron and ion temperature)

5
AV |:§ Te (nuHeH — DJ_eJ_eJ_ -Vn) — (neeHeH -+ XeneJ_eJ_) 'VTe:| = +K(T/ - TG)SE’J’"P

—K(Ti—Te) + Sei

5
V- |:§T,'(I7UH9” — DLeLeL~Vn) — (K,,-eHeH + X,-neleL) VT,:|

Xe, Xi: anomalous cross-field transport Se...: interaction with neutral particles and impurities
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Energy losses are very sensitive at low temperature

Energy loss rate coefficients

m EIRENE: kinetic transport of neutral particles
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Energy losses are very sensitive at low temperature

Energy loss rate coefficients

m EIRENE: kinetic transport of neutral particles

10° \
AMJUEL / HYDHEL
| —
— Ny, nHZ, nH2+
convolution of atomic and molecular processe:
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i - o 109
m Energy losses from electron impagt’processes: >
€
o
o
See = — E ne - n. - Rx(Te,Ne) g 1o
Q
X o
2
©
o e+ H — 2e + H'
R 2e + Hj —
1013’ e+ Hy — e+H42rH
2¢ + H + H
e+ H+ H"
e+ Hj — {2e+H"+H‘r
10715 HtH ——
0.1 1 10 100
Electron Temperature [eV]
_ Detached divertor conditions in RMP H-mode plasmas in ITER 24



Energy losses are very sensitive at low temperature

Energy loss rate coefficients

m EIRENE: kinetic transport of neutral particles

10° \
AMJUEL / HYDHEL
— Ny, nHZ, nH2+ /
convolution of atomic and molecular processe:
VI_(I)
. -
m Energy losses from electron impagt’processes: 3
5
See = _Zne -n_. - Rx(Te, ne) € 1o
X 8
o
©
o e+ H — 2e + H'
. . . 107 ¢ e+ Hy — zeJHHi H
m lterative approximation of energy balance: 20+ H + H*
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Linearization of S, provides stabilization at detachment

relevant low divertor temperatures

Averaged Temperature at inner target

‘ ‘ ‘ ‘ Explicit coupiing
_ 30
” = \
attached conditions: o 207
- 10
0 L L L L L
0 50 100 150 200 250 300

Iteration number
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Linearization of S, provides stabilization at detachment

relevant low divertor temperatures

m Temperature dependence of Sge is not treated accurately enough at low T, relevant
for detachment

Averaged Temperature at inner target

‘ Explicit coupiing

Te [eV]

0 50 100 150 200 250 300
Iteration number



Linearization of S, provides stabilization at detachment W

relevant low divertor temperatures

m Temperature dependence of Sge is not treated accurately enough at low T, relevant
for detachment

Temperature profile along target Averaged Temperature at inner target
20 | Explicit coupling
S 15 | >
9 2
@ 10¢ @
5 L
-10 0 10 20 30 40 0 50 100 150 200 250 300

Distance from separatrix [cm] Iteration number



Linearization of S, provides stabilization at detachment W

relevant low divertor temperatures

m Temperature dependence of Sge is not treated accurately enough at low T, relevant
for detachment

Temperature profile along target Averaged Temperature at inner target
10 T .
Explicit coupling
20 8+ See linearization
E 15 E 6 L
R 10 o 4 P
5r ol
0 ? . 0 . . . . .
-10 0 10 20 30 40 0 50 100 150 200 250 300
Distance from separatrix [cm] Iteration number

m More accurate treatment of T, dependence based on first order Taylor expansion:

) ~ |SeaTE) + (1O - T o
TY="



Extended operation range of EMC3-EIRENE is verified by

comparison to SOLPS-ITER

Gas puff T,

m H-plasma (PFPO, no seeded impurities), model parameters:

D, =03m?s !y, = 1m?s!

m Self-consistent particle balance MNyump = gas + [core including
recirculation below the dome

Core fuelling T

—  Semi-transparent dome support (50 %)
Pumping (0.72 %)

m Include N-N collisions (BGK), molecular assisted
recombination (MAR)

Neutral Pressure
computed here

m Fueling scan (I'gas) — evaluate neutral pressure & divertor loads |_>

Pumping T,



Extended operation range of EMC3-EIRENE is verified by W

comparison to SOLPS-ITER

m Continuous reduction of peak heat flux during gas puff scan

Heat load profiles (Outer target)
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X Gas puff [102 s 1] = 0.15 ==

— 4
)
€
=z 4|
g s
B
S 2t EMC3-EIRENE (solid)
3 SOLPS-ITER (dashed)
uy 11

0

-10 0 10 20 30 40
Distance from Separatrix [cm]



Extended operation range of EMC3-EIRENE is verified by W

comparison to SOLPS-ITER

m Continuous reduction of peak heat flux during gas puff scan

Heat load profiles (Outer target)
5 . :
Gas puff [102s =015 ——
038 ——
«— 4 089 ——
' 1,13 —
2 L
= 3
B
o 2t EMC3-EIRENE (solid)
3 SOLPS-ITER (dashed)
T 4|
0 e T Ee——

-10 0 10 20 30 40
Distance from Separatrix [cm]



Extended operation range of EMC3-EIRENE is verified by W

comparison to SOLPS-ITER

m Continuous reduction of peak heat flux during gas puff scan

Heat load profiles (Outer target)
5 . :
Gas puff [102s =015 ——
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Extended operation range of EMC3-EIRENE is verified by

comparison to SOLPS-ITER

m Continuous reduction of peak heat flux during gas puff scan

m A clear roll-over of peak particle flux is found by both codes in
good agreement

Heat load profiles (Outer target) Peak particle load (Outer target)
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