

Development and testing results of water-cooled divertor target concepts for EU DEMO reactor

Third Technical Meeting on Divertor Concepts

IAEA Headquarters, Vienna, 4-7 November 2019

Presenter:Visca Eliseo, ENEAContributors:J.-H. You, H. Greuner, A. v. Muller

EU DEMO divertor: structure

• vertical targets: tungsten monoblock armor + copper alloy (or composite) pipe

4-7 November 2019

tubes

Heat flux loads and coolant parameters

EUROFUSION DEMO activity plan for divertor

Divertor Project: PPPT-WPDIV

WBS 1 - Cassette Development

Design, neutron irradiation calculations, hydraulic, RH

WBS 2 - Target Development

- 1) explore the design feasibility of various Vertical Target concepts
- 2) optimize the target design and technology
- 3) evaluate the individual target concepts by means of HHF test on real mock-ups,
- 4) select the best candidates with regard to:
 - the power exhaust removal capability
 - structural reliability
 - manufacturing technology suitable for industrial scale
- 5) qualify medium size prototypes under HHF fatigue and transient thermal loads.

4-7 November 2019

1st phase R&D activities

2nd phase R&D activities

- 1. FEA for thermo-mechanical prediction and geometrical optimization
- 2. Mock-up fabrication
- 3. Non-destructive test (Ultrasonic ENEA-ULTRAS and SATIR-CEA)
- Thermal fatigue tests in GLADIS cool (20°C) and hot (130°C) coolant temperature conditions (HHFT)
- 5. Post HHFT Non-destructive test (ENEA-ULTRAS and SATIR-CEA)
- 6. Post mortem destructive analysis (W, interlayer, pipe)

ENER Techno	Technology R&D lines/concepts						
ITER-like	 ✓ Fabrication technology ful ✓ Mock-up production comp ✓ High-heat-flux testing perf 	ly established. pleted. Formed					
Composite block (W _p /Cu)	 Baseline: tungsten mono-block type Extra concepts: tungsten flat-tile type Helium jet injection (dual pipes) 	Thermal break					
Composite pipe (W _f /Cu)	He jet injection (helium-cooled) Example 23 New developments in the design of a helium- cooled divertor for the Europen DEMO Third IAEA Technical Meeting on Divertor Concepts, Vienna	FGM- Functional Graded Material Image: state stat					

Fabrication plan 1st phase

4-7 November 2019

Third IAEA Technical Meeting on Divertor Concepts, Vienna

Ultrasonic test by ENEA-ULTRAS

ULTRASONIC TECHNIQUE PRINCIPLE

- **ultrasonic** pulse-echo technique: the probe is placed in the bore of the CuCrZr pipe with water fill
- echo signal is acquired for specific radial penetration by axial scanning
- joined interfaces map created (unwrapped cylindrical map: c-scan)
- calibration by reference component with known defect size

HHF test strategy for concept assessment

Experimental validation of thermo-mechanical behaviour under DEMO relevant cyclic heat loads and cooling conditions

Aim: Identification of the most promising concept(s)

 cyclic heat loading in GLADIS (hydrogen neutral beam facility) to investigate fatigue and accumulation of plastic strain in materials

Uniform test procedure and typically 3 mock-ups for concept:

1.Step (each mock- up): cold-water, low pressure (20 ° C inlet, 10 bar, 12 m/s) as "initial assessment"

- 1. screening up to 25 MW/m^2 ,
- 2. 100 cycles 10 s at 10 MW/m² fatigue as quality assessment

2. Step: hot-water, higher pressure (130 ° C inlet, 40 bar, 16 m/s)

- 1. screening up to 20 MW/m^2 ,
- 2. cycling up to 500 (1000) cycl. at 20 MW/m², 10 s (one mock-up of each concept)

3. Step: cold-water, high velocity (20° C inlet, 16 m/s) overload screening and fatigue tests
 1. screening up to 32 MW/m², followed by 100 x 25 MW/m²

Rationale for step 3: to test thermal limits close to the collapse of heat transfer (CHF). Considering a safety margin of **1.4**, the heat flux on the components should be **limited to 22 MW/m² during hot water cooling**. → Therefore we performed the tests at **cold water** and coolant high velocity for a safe heat transfer up to 32 MW/m².

Summary table of 1st phase mock-ups

RU	Design concept	CuCrZr tube condition as received	CuCrZr tube supplier	W grade	Interlayer	Tube Joining techn.	Brazing alloy (if brazed)
CEA	FGM	SAA	Le Bronze	ALMT Japan	Graded W	HIP/brazed	
CCFE	TBCI-w27-split	SAA	Zollern	ALMT Japan	OFE Cu, Machined	brazing	CuAu
CCFE	TBCI-w22-split				OFE Cu, Machined		
КІТ	Flat W laminate (DB)			ALMT Japan		D. bonding	
	W-Composite (particulate/flat)			ALMT Japan		brazing	CuAu
IPP	W-Composite (W-fibre, monoblock)			ALMT Japan	OFE Cu	brazing	CuAu
ENEA	DEMO (4 mm W)	SAAWcD	KME-DE	ALTM+AT&M			
	ITER-Optimized (12 mm W)			ALTM+AT&M		HRP	
	ITER-WPMAT x 1			KIT (PIM)			

Grade CRM16 TER = Tempered Stretched Annealed ELBRODUR-HF

Cold water HHF results 1st phase mockups

		N	DT		COLD WATER - 20°C, 1 MPa, 12 m/s				
Design concept	Comp.	Ultrasonic	SATIR	A -screening cold water 20 MW/m ²	B, 100 x 10 MW/m ²	C, 100 x 15 MW/m²	D, overload 25 MW/m ² screening	E, overload +100 x 20	
TBCI-w27-split	#001	ОК	ОК	ОК	ОК		ОК	\rightarrow	
	#002	ОК	ОК	ОК	ОК				
	#003	ОК	ОК	ОК		ОК			
	#004	ОК	ОК	ОК		ОК			
TRCI w22 colit	#005	ОК	ОК	ОК	OK				
i bei-wzz-spiit	#006	ОК	ОК	ОК	ОК			\rightarrow	
Flat tile-KIT	no. ?			failed					
Flat tile-KIT HIP	H20 V 21			failed					
Flat tile-KIT HIP	H20 V 31			only 17MW/m ²		failed, #76			
	#3	ОК	ОК	ОК	OK		ОК	04	
	#4	ОК	ОК	ОК	ОК		01	\rightarrow	
FGM	#5	ОК	ОК	ОК		ОК			
	#6	1	1	ОК	ОК				
	#1	ОК	ОК	ОК		ОК	ОК		
	#2	two defective	outer tiles	-	-	-			
	#005	ОК	ОК	ОК	ОК				
DEMO opt	#007	12	12	ОК	ОК				
	#008	1,11,12	1,11,12	ОК					
	#009	ОК	ОК	ОК		ОК			
ITER-Optimized	#011	ОК	ОК	ОК	ОК			\rightarrow	
	#012	ОК	ОК	ОК	ОК				
	#1			ОК				failed #362	
W-Composite	#2			ОК				OK	
	#3			22 MW/m², failed					
Wfibre CuCrZr tube				ОК			ļ		
WfCu Monoblock	#1	ОК		ОК	OK				

Hot water HHF results 1st phase mockups

		N	DT	HOT WATER 130°C, 4 MPa, 16 m/s					Pa, 16 m/s
Design concept	Comp.	Ultrasonic	SATIR	Screening 20 MW/m ²	100 cycl 10 MW/m²	100 cycl 15 MW/m²	100 cycl 20 MW/m²	300 cycl 20 MW/m ²	Result hot water tests
	#001	ОК	ОК	OK			OK	STOP	degrad. of upper blocks, stop after cycl.150 1)
TBCI-w27-split	#002	ОК	ОК					mup not selected for hot water tests	
	#003	OK	OK	OK	OK	ОК		PASSED	o.k., strong surface modification visible
	#004	OK	OK		20				mup not selected for hot water tests
TBCLw22-colit	#005	OK	OK	OK			PASSED		o.k., Swagelok damaged
TDCI-w22-split	#006	ок	ОК	ОК			ОК	PASSED	o.k. increase of Tsurf lam 2-5 lower central part, only minor surf. modification visible 2)
Flat tile-KIT	no. ?						48		based on cold water results, mup not tested
Flat tile-KIT HIP	H20 V 21					based on cold water results, mup not tested			
Flat tile-KIT HIP	H20 V 31								based on cold water results, mup not tested
	#3	OK	OK						mup not selected for hot water tests
	#4	ок	ОК	ОК			ОК	PASSED	o.k., continous increase of Tsurf centre blocks 5-7 during cycling (IR ananlysis) 3)
FGM	#5	OK	ОК	OK	OK	OK	PASSED		100 x 10MW/m ² , 100x15MW/m ² , o.k
	#6	1	1					based on cold water results, mup not tested	
	#1	ОК	OK						
	#2	two defective	outer tiles						no GLADIS tests
	#005	OK	OK	OK			OK	PASSED	o.k. no visible degradation
DEMO opt	#007	12	12						based on cold water results, mup not tested
	#008	1,11,12	1,11,12						based on cold water results, mup not tested
	#009	ОК	OK						
ITER-Optimized	#011	ок	ок	ОК			ОК	PASSED	o.k., strong surface modification block swelling visible after ~200 cycl.
	#012	OK	OK		1ec				
	#1								Mup not suitable for hot water cooling
W-Composite	#2					120			Mup not suitable for hot water cooling
	#3								Mup not suitable for hot water cooling
Wfibre CuCrZr tube									only tube, not tested
WfCu Monoblock	#1	OK		OK			OK	PASSED	o.k. no visible degradation

4-7 November 2019

1st phase - Post-mortem examinations plan

2.10.2	2018				39 bloc	ks of 11 mo	ck-ups	
				Ţ	۲ ۲	election of o	damaged an	nd undamaged blocks after HHF tests
	Mock-up	Maximum heat flux	Cut	Blocks	Cut	Analysed	Reported	1 Undamaged block taken from mock-up with min of solicitation
	CCFE#3	300x20 MW/m2	Axial &	CCFE#3-2	x			2. Undemaged block af a mask up after bet water IUE tests
		hot water	IPP	CCFE#3-7	x			 Ondamaged block of a mock-up after hot water HHF tests Mock-up used as a reference for SATIR (DTref~5°C)
	CCFE#5	100x20 MW/m2	Transversal	CCFE#5-5	х	х	х	4. Made up used to updentend defect detected with LT
	CCEE#6	500w20 MW/m2	Avial	CCFF#6.4	v			4. Mock-up used to understand defect detected with OT
11	CCIL#0	hot water	transversal IPP	CCIE#0-4	x			5. Damaged block(s) due to hot water HHF tests
				CCFE#6-8	x			
				CCFE#6-9	х			
	ENIE A 45	500-20 309/2	Anial authing	EXTERNES 1	х]
	(CASTING)	hot water	in IPP then	and #5-11	х	х	х	
	(0.10111(0))	not water	Transversal cut in IPP/CEA	ENEA#5-12	x			Metallographic examination + NDT and HHF correlation
					x	x	x	
_ T	(HID)	and writer	CEA	- desidencia - O				to define NDT reliability nature of thermal imperfection
	ENEA#8	Ser at 20 MW/m2	Transversal	ENE 4#8-2	х	х	Х	
	(CASTING)	cold water	CEA	ENEA#8-8	x	x	х	
					v			
	ENEA#11	300x20 MW/m2	Axial cutting	ENEA#11-1	~			
	(HIPING)	hot water	in IPP then Transversal cut in IPP/CEA	ENEA#11-2	- x			
				ENEA#11-3	x			
lter-l				ENEA#11-4	x			Analyzed mock-ups which sustained
	CEA#2	1000x20 MW/m2	Transversal	CEA #2-4	X	x	X	
		500x20 MW/m2	JULICH	CEA #2-7	X	X	X	5000@201919/111 .
- I (X Sout to IBB 01.00	X Sout to IPP 01 00	X Sout to IPP 01 09	
i	CEA#4	hot water	in CEA then	CEA#4-2	Sent to IPP 01.08	Sent to IPP 01.08	Sent to IPP 01.08	
			and analysis in	CEA#4-0	Schi 10 11 1 01.08	Sent to HI 1 01.08	Sch 10 11 1 01.08	CCFE#6 ENEA#5 CEA#4 IPP#1
11			IPP/CEA	CEA#4-6	х	x	x	
				CEA#4-10	х	х	х	
FGM	CEA#6	100x20 MW/m2 Cold water	Transversal CEA	CEA #6-10	x	x	x	
5	IPP#1	500x20 MW/m2 hot water	Axial & transversal	IPP#1-4→ IPP#1-9	22	22	22	
M	4-7 Nover	nber 2019	IPP			Third IAEA Tec	hnical Meeting	on Divertor Concepts, Vienna 15

Example of micrographs post HHF testing

CuCrZr-pipe and W-block micrographs for ENEA#5

Third IAEA Technical Meeting on Divertor Concepts, Vienna

| PAGE 17

1st phase - Summary and conclusion

Summary

- 1st Phase HHF completed with very good results
- 300 cycles at 20 MW/m² hot-water of all W monoblock concepts successfully performed
 - good agreement between FEM predicted and measured surface temperatures
 - Indication of recrystallization and grain growth of W surface after 500 cycles at 20 MW/m²

Outlook

- NDT performed before and after HHF loading
- Micrographs of selected mock-ups
 - Investigation of recrystallization depth, grain size
 - Investigation of W/Cu interface, plastic deformation, delamination, cracks

Conclusion

- European labs are able to produce advanced W divertor water-cooled PFCs for DEMO application. These components withstand up to 20 MW/m² cyclic heat load
- Important R&D progress in the last years, improvements are still possible
- Standard mock-up geometry is required to enable concept comparison

ENEL

2nd Phase R&D activities

(C) EUROfusion

19

Started begin 2017 and concluded in 2018 Standardized pipe and W-block dimensions 75.25mm for all design-concepts under development 52.75mm 4mm 12mm ✓ Surface W thickness >= 8mm (erosion) . 49,5mm 150mm 44.5m ✓ Pipe wall thickness 1.5 mm (corrosion) - 0,5mm W-block axial dimension 12 mm ✓ W-block width ~23 mm Phase 2 Phase 1 ✓ 4 W-blocks for mock-up 🗕 22mm -Ø14±0,2 mm Ø16mm ✓ Gap among W-blocks 0,5 mm Ø15mm 16mm 12mm 23mm 27mm Ø12mm Final HHFT @ 20 MW/m² 11mm Ø12±0.2 mm 11,5mm

4-7 November 2019

ENEN	2 nd phase R&D a	activity plan	EUROfusion
1st R&D phase The second se	2nd R&D phase Final control of the second se		NDT HHFT NDT
ITER-like (Cu interlayer: 1mm)	<section-header></section-header>	Composite pipe (W-wire + Cu matrix)	Micro FGM- Graded interlayer (W/Cu: 20μm, 400μm)
4-7 November 2019	Third IAEA Technical	Meeting on Divertor Concepts, Vienna	20

2nd phase mock-up fabrication

ENEN

			Investigation	n of diffe	rent interla	aver thickness
	Design concept	Amount of mock-up-record				
				10	20/44/47	
ENEA			AT8 M 1mm Cu	10	30/11/1/	HRP
ENEA	TER LIKE (AT&IW)	3		23	10/02/18	
				24	11/04/18	
FNFA	ITER LIKE (ALMT)	3	AITM 1mm Cu	23	24/04/18	HRP
	There entre (Petitit)			29	27/04/18	HRP
				30	10/07/18	HRP-Failure
ENEA	25 micron Cu coating by CEA	2	AT&M	31	01/08/18	HRP-Failure
				20	17/01/18	HRP
				21	17/01/18	HRP
ENEA	100 micron Cu	2	AT&M	22	30/01/18	HRP-Failure
				26	18/04/18	HRP
				18	20/12/17	HRP
ENEA	300 micron Cu	2	AT&M	19	12/01/18	HRP
				27	20/04/18	HRP
	W-Fibre Composite	3		5	06/03/18	CuAu
ENEA-IPP				10	07/03/18	CuAu
			AT&M 1mm Cu	12	10/05/18	CuAu
				14	04/10/18	CuAu
IPP	W-Particulate Cu	3	? flat			
654	20 million Con LUD		47814 2016	7	17/11/17	PVD+HIP
CEA	20 micron Cu-HiP	2	A1&W 2016	8	17/11/17	PVD+HIP
			AT8 M 2016	9	17/11/17	PVD+HIP
654	FGM thin	2	A1&IVI 2010	10	17/11/17	PVD+HIP
CEA		2	AT8 M 2018	14	18/10/18	PVD+HIP
			A10(W) 2010	15	18/10/18	PVD+HIP
				11	20/06/18	CS+HIP
CEA	FGM 500µm	2	AT&M 2016 and AT&M 2018	12	20/06/18	CS+HIP
				13	20/06/18	CS+HIP
			4off ALMT	7	04/06/18	CuAu Braze
CCEE	Thermal break	4	4off ALMT	8	25/06/18	CuAu Braze
	mermai preak		4off ALMT	9	25/06/18	CuAu Braze
			4off ALMT	10	25/06/18	CuAu Braze
				1 tile	01/06/18	HIP
				2 tiles	01/06/18	HIP
кіт	Flat/saddle tile	3		4 tiles	01/06/18	HIP
	,	-		1 tile	01/06/18	HIP
				2 tiles	01/06/18	HIP
				4 tiles	01/06/18	HIP

ENER

NDT results for 2nd phase mock-ups after fabrication

				i		
	Desime second	The Milder		UT ENEA	SATIR	GLADIS
	Design concept	Туре уу бюск	#	Results	Results	Arrived
			16	ОК	Thermal imperfection block 1	12/04/18
ENEA	ITER LIKE (AT&M)	AT&M 1mm Cu	23	ОК	No thermal imperfection	12/04/18
			24	ОК	OK (Ref)	12/04/18
			25	ОК	No thermal imperfection	25/06/18
ENEA	NEA ITER LIKE (ALMT)	ALMT 1mm Cu	28	ОК	OK (Ref)	25/06/18
			29	ОК	No thermal imperfection	25/06/18
ENEA	25 micron Cu coating by	AT 9. M	30	Failure during manufacturing		
ENEA	CEA	ATONI	31			
			20	NC to UT		
ENEA	ENEA 100 minute Co.	ATO NA	21	ОК	Thermal imperfection block 4	10/07/18
EINEA	100 micron Cu	AI&IVI	22	Failure during HRP	-	-
			26	ОК	No thermal imperfection	10/07/18
		AT&M	18	NC		
ENEA	ENEA 300 micron Cu		19	ОК	No thermal imperfection	25/06/18
			27	ОК	OK (Ref)	25/06/18
	ENEA-IPP W-Fibre Composite	AT&M 1mm Cu	5	NC		
			10	ОК	OK (Ref)	25/06/18
ENEA-IPP			12	ОК	Thermal imperfection all blocks	25/06/18
			14	Small defect at block #2	Thermal imperfection all blocks	22/10/18
IPP	W-Particulate Cu	?				
CE A	20 misson Cu IIID	AT9 M 2016	7	ОК	OK (Ref)	04/06/18
CEA	20 micron Cu-HiP	AT&IVI 2010	8	NO #4 (inside W)	Thermal imperfection block 4	22/02/18
		AT9 M 2016	9	ОК	OK (Ref)	22/02/18
CE A	COM this		10	NO- All (inside W)	Thermal imperfection all blocks	22/02/18
CEA	Fow thin	ATO NA 2010	14	large defect at block 1	Thermal imperfection block 1	14/11/18
			15	0k	OK (Ref)	14/11/18
			11	N#2 detaced at Cu/W	Thermal imperfection block 2	28/11/18
CEA	FGM 500µm	AT&M 2016 and	12	N#2-small defect	OK (Ref)	28/11/18
		AT&M 2018	13	N#2 #3 detaced at Cu/W	Thermal imperfection blocks 2 & 3	28/11/18
		4off ALMT	7	Ok	OK (Ref)	26/07/18
COLL	The survey laws of	4off ALMT	8	Ok	No thermal imperfection	26/07/18
CUFE	i nermai break	4off ALMT	9	Ok	No thermal imperfection	26/07/18
	4off ALMT	10	Ok	No thermal imperfection	26/07/18	

4-7 November 2019

ENEN

HHF qualification: impact of the Cu interlayer thickness

ITER-like (2nd phase, W: 8mm), W: AT&M -> 32 MW/m² (5 pulses) + 25 MW/m² (100 pulses)

ENER

2nd phase mock-ups qualification testing

pulse CEA#12

2nd phase mock-ups qualification testing

EU-DEMO DIVERTOR TARGETS

Summary

- 1st and 2nd R&D phases completed with very good results in agreement with calculations
- R&D activities performed for all concepts to improve reliability and performances
- NDT performed before and after HHF loading of all W monoblock concepts
- HHF testing campaign completed for all concepts

Conclusion

- Only slight differences in the HHF behavior due to the concept design solution adopted
- Important outcome R&D progresses for novel technologies (W/Cu composites for heat-sink and pipes, FGM interlayer, new ENEA-HRP furnace,)
- No critical damage features found (no armor cracking, intact joining, no structural failure)
- Week points to be further investigated: interlayer thickness (is 1 mm really necessary?), standards and codes for novel materials of pipes (WfCu), neutron damage on materials, possible scale-up of selected concepts, performances under long-pulse thermal loads

4-7 November 2019

4-7 November 2019