

- \diamond Need for more and quicker divertor design guidance/analysis
- Using 'experiments' in SOLPS to quantify the effect of divertor design characteristics on control of divertor detachment onset
 - \diamond Strike point angle
 - \diamond Baffling
 - \diamond Total flux expansion
- \diamond Implications for improving the design process

B. Lipschultz¹, A. Fil^{1,2}, B. Dudson¹, D. Moulton², O. Myatra¹, K. Verhaegh^{1,2,3} and the TCV team³

Most of the thoughts presented are based on the paper -A. Fil et al., 'Separating the roles of magnetic topology and neutral trapping in modifying the detachment threshold in TCV', **Submitted to Plasma Phys. & Contr. Fusion.** IAEA Tech. mtg divertors, 4 Nov 2019 Vienna

¹University of York, UK, ²CCFE, UK, ³TCV team

- 1. The core plasma conditions are set based on reactor goals
 - (Q, B, current, aspect ratio,..)
 - Magnetic flux equilibrium developed
- 2. Space allocated to the divertor based on the coil size
- 3. Run SOL/divertor fluid codes to determine whether the divertor performs 'adequately'
 - Close the loop on the reactor design both with engineering and core plasma performance

- 1. The core plasma conditions are set based on reactor goals
 - (Q, B, current, aspect ratio,..)
 - Magnetic flux equilibrium developed
- 2. Space allocated to the divertor based on the coil size
- 3. Run SOL/divertor fluid codes to determine whether the divertor performs 'adequately'
 - Close the loop on the reactor design both with engineering and core plasma performance

- Are there more ways to enhance the feedback between divertor design and core characteristics?
 - Can simpler (than SOLPS) calculations be properly used?
 - Can one more quickly determine the core operational space compatible with detachment?
 - Can we be quantitative about how those divertor characteristics control detachment access and its characteristics?
 - We have addressed this question through a SOLPS study of TCV detachment threshold in upstream density, $n_{u,d}$

- Increase target strike point radius, R_t
 - |B_t|, drops. Area of flux tube increases
 - The heat flux parallel to B, q_{II,t} drops

Flux tube area increases as total B drops

$$q_{\parallel} \cdot A_{fluxtube} = cons$$
$$\Rightarrow q_{\parallel} \propto |B| \sim \frac{1}{R}$$

Not a new effect! Already in SOL/Div codes

Simple effect of total flux expansion predicted to lower the detachment threshold

- Increase target strike point radius, R_t
 - |B_t|, drops. Area of flux tube increases
 - The heat flux parallel to B, q_{||,t}, drops
 - lowering the detachment threshold in upstream density, $n_{u,d}$

*M. Kotschenreuther et al., Nucl. Fus. **50** (2010) 035003, TW Petrie et al, J. Nucl. Mat. **438**(2013) IAEA Tech. mtg divertors, 4 Nov 2019, S166, B. Lipschultz et al., Nucl. Fus. **56** (2016) 056007, D. Moulton et al., PPCF 59 (2017) 065011

 Predict the radio of detachment thresholds for the low and high target radius, *R_t*:

$$D_{predicted} = \frac{n_{u,d}^{R_{t,high}}}{n_{u,d}^{R_{t,low}}} \sim \frac{R_{t,low}}{R_{t,high}} = \frac{0.68}{0.92} = 0.76$$

Experiments contradict simple predictions for total flux expansion

Experiments contradict simple predictions

Strike point angle is another important divertor characteristic and is different for low- and high R_t in TCV

 Recycled neutrals are launched towards different parts of the divertor plasma for lowand high-R_t

Strike point angle to the surface affects the ionization profile

- JET is a good example of the effect of varying strike point angle
 - Recycling neutrals ionize in different plasma regions for 'vertical target' and 'horizontal target'

Strike point angle to the surface affects the ionization profile

- EDGE2D-Eirene calculations demonstrate difference in ionization
 'Vertical target'
 ionization near separatrix
 increase density; lower temperature
 lowers detachment threshold
 - 'horizontal target'
 - ionization farther from the separatrix

- Experimental comparison:
 - vertical target ~40% lower detachment threshold, n_{ud}
- Most tokamaks moved to the vertical target geometry in the early 2000s

Baffle geometry also has a strong role in determining the detachment threshold

• Low R_t divertor traps neutrals between inner wall, inner and outer separatrices

15

- Low R_t divertor traps neutrals between inner wall, inner and outer separatrices
- Neutrals in the high R_t configuration easily escape the divertor

16

- Total flux expansion lowers $n_{u,d}$ for the high- R_t
- Strike point angle and neutral baffling lower $n_{u,d}$ for the low- R_t

Define 'neutral trapping' to aid in comparing various effects

- We quantify the relative contributions of strike point angle and neutral baffling on the detachment threshold
 - η_{RI} is the fraction of the total divertor ionization source that occurs in a flux tube near the separatrix
 - We make this 'measurement' for TCV SOLPS cases

• Detachment threshold $n_{u,d}$ appears sensitive to η_{RI}

 Similar neutral confinement for high- & low-Rt; better match to total flux expansion prediction
A Fillet al submitted to PPCE

19

Having baffling AND strike point angle the same for lowand high-R_t: isolate total flux expansion effect

• Match predictions for total flux expansion!

- Baffle (confining recycling neutrals)
 - Raises neutral density across the entire divertor, raising density and ionization costs, accelerating detachment
 - Small effect on $\eta_{\rm RI}$ but large on $n_{u,d}$
- Strike point angle of 'vertical target'
 - Raises neutral density and ionization costs on a focussed region
 - Larger effect on $\eta_{\rm RI},$ similar for $n_{u,d}$

• We expect adding vertical target to high-R_t to reduce $n_{u,d}$ and raise η_{RI}

- Caveat This analysis presented here is for TCV conditions, far from a reactor
 - However, strike point angle and neutral baffling enhancements are recognized in studies of ITER, C-Mod and AUG
 - The total flux expansion effect is straightforward and already in codes.

- Results indicate the the effect of total flux expansion is occurring but may be hidden by neutrals effects
 - It is 'additive', or 'subtractive' in this case, so an independent effect

• These results can be generalized using the Lengyel radiation formulation to include two other 'control' variables¹ – impurity concentration, C_z , and P_{SOL} :

$$\left[\frac{n_u C_z^{1/2}}{P_{SOL}^{5/7}}\right]_{\det ach} \propto \frac{\left|B_{tar}\right|}{\left|B_x\right|} f(L, Z_x / L)$$

• Lower $n_{u,d}$ is equivalent to detaching at higher P_{SOL} or lower C_z

IAEA Tech. mtg divertors, 4 Nov 2019 Vienna

¹B. Lipschultz et al, Nucl. Fusion **56** (2016) 056007₂₄

Other 'experiments' in SOLPS* on detachment position control

MAST-U Detachment (seeding):

*O. Myatra, MAST-U, PSI18 poster

Other 'experiments' in SOLPS* indicate control increases with the magnitude of $\nabla |B|$

6

4

2 arg N_a-seeding scan

Electron density (10¹⁹m⁻³)

dplane

S_{N2}

1.9

10

|B|->

18

1.5

1

0.5

- Movement slows down even though seeding rate is strongly increased
- Radiation region 'stops' mid-divertor where ∇|B| (really **∇**|**q**_{||}) large

Strong ∇|B| correlates with 'slowing' front movement*

*B. Lipschultz et al, Nucl. Fusion **98** (2016) 056007

R

Model prediction¹ of movement fair approximation of SOLPS 'experimental' results

*B. Lipschultz et al, Nucl. Fusion 98 (2016) 056007

Summary - Control of detachment threshold and movement

- To optimize minimization of the detachment threshold:
- Divertor designs should enhance baffling & optimize strike point angle
 - If total flux expansion can be accommodated it will
 - Lower n_{u,d} further (and potential to optimize control of location)
- Further studies needed:
- A full study over a range of strike point angles would help optimize strike point angle choice over a range of divertor plasma densities and q_{||}
- More study is needed of how divertor design choices affect:
 - Divertor impurity confinement (e.g. forces on impurity ions)
 - Detachment control after onset

Backup slides

IAEA Tech. mtg divertors, 4 Nov 2019 Vienna

Model prediction¹ of detachment location movement can be used to compare to SOLPS results

Useful for predicting general sensitivity of detachment movement, *z*, to changes in one or more control variables, *C_x* and their derivative *dz/dC_x* (and detachment thresholds)
Many simplifications required for such an analytic model

$$\frac{n_{u}f_{imp}^{1/2}}{P_{SOL}^{5/7}} \propto \frac{B[z]}{B_{x}} \left[\frac{(z_{x} - z)}{3} \left(1 + \left| \frac{B[z]}{B_{x}} \right| + \left| \frac{B[z]}{B_{x}} \right|^{2} \right) + \frac{(L - z_{x})}{2} \right]^{2/7} \frac{C_{nu}C_{imp}^{1/2}}{C_{PSOL}^{5/7}} \propto A[z]$$

- Initial control variables, C_x impurity concentration, P_{SOL} and upstream density, n_u
- Movement in z related to
 - magnetic field profile (affects $\nabla |B|$ and $\nabla |q_{\parallel}|$) and z_x/L
 - Variation in control variables, C_x , leads to a different solution and z

¹ B. Lipschultz et al, Nucl. Fusion **98** (2016) 056007