Using variations in divertor magnetic topology and geometry to optimize divertor detachment

Need for more and quicker divertor design guidance/analysis

Using ‘experiments’ in SOLPS to quantify the effect of divertor design characteristics on control of divertor detachment onset

- Strike point angle
- Baffling
- Total flux expansion

Implications for improving the design process

Most of the thoughts presented are based on the paper – A. Fil et al., ‘Separating the roles of magnetic topology and neutral trapping in modifying the detachment threshold in TCV’, submitted to Plasma Phys. & Contr. Fusion.

B. Lipschultz¹, A. Fil¹,², B. Dudson¹, D. Moulton², O. Myatra¹, K. Verhaegh¹,²,³ and the TCV team³

¹University of York, UK, ²CCFE, UK, ³TCV team
1. The core plasma conditions are set based on reactor goals
 • (Q, B, current, aspect ratio,..)
 • Magnetic flux equilibrium developed
2. Space allocated to the divertor based on the coil size
3. Run SOL/divertor fluid codes to determine whether the divertor performs ‘adequately’
 • Close the loop on the reactor design both with engineering and core plasma performance
1. The core plasma conditions are set based on reactor goals
 • (Q, B, current, aspect ratio,..)
 • Magnetic flux equilibrium developed

2. Space allocated to the divertor based on the coil size

3. Run SOL/divertor fluid codes to determine whether the divertor performs ‘adequately’
 • Close the loop on the reactor design both with engineering and core plasma performance

Bottleneck for optimization
Are there ways to enhance the feedback between divertor design, engineering and core characteristics?

• Are there more ways to enhance the feedback between divertor design and core characteristics?
 • Can simpler (than SOLPS) calculations be properly used?
 • Can one more quickly determine the core operational space compatible with detachment?
 • Can we be quantitative about how those divertor characteristics control detachment access and its characteristics?
 • We have addressed this question through a SOLPS study of TCV detachment threshold in upstream density, $n_{u,d}$
Reminder – what is total flux expansion

- Increase target strike point radius, R_t
- $|B_t|$, drops. Area of flux tube increases
- The heat flux parallel to B, $q_{\parallel,t}$ drops

\[B \cdot A_{\text{fluxtube}} = \text{const} \]

Flux tube area increases as total B drops

\[q_{\parallel} \cdot A_{\text{fluxtube}} = \text{const} \]

\[\Rightarrow q_{\parallel} \propto |B| \sim \frac{1}{R} \]

Not a new effect! Already in SOL/Div codes
Simple effect of total flux expansion predicted to lower the detachment threshold

- Increase target strike point radius, R_t
- $|B_t|$, drops. Area of flux tube increases
- The heat flux parallel to B, $q_{\parallel,t}$, drops
- lowering the detachment threshold in upstream density, $n_{u,d}$

$$n_{u,d} \propto \frac{1}{\left| \frac{B_x}{B_{tar}} \right|} \frac{P_{SOL}^{5/7}}{L^{2/7}} \sim \frac{R_x}{R_t} \frac{P_{SOL}^{5/7}}{L^{2/7}}$$

Total flux expansion

Prediction of the effect of total flux expansion for TCV

• Predict the ratio of detachment thresholds for the low and high target radius, R_t:

\[
D_{\text{predicted}} \equiv \frac{n_{u,d}^{R_{t,\text{high}}}}{n_{u,d}^{R_{t,\text{low}}}} \sim \frac{R_{t,\text{low}}}{R_{t,\text{high}}} = \frac{0.68}{0.92} = 0.76
\]
Experiments contradict simple predictions for total flux expansion

- TCV experiments\(^1\) studying just the upstream density detachment threshold, \(n_{u,d}\), contradict the simple scaling.

\[
D_{\text{predicted}} \equiv \frac{n_{u,d}^{R_{t,\text{high}}}}{n_{u,d}^{R_{t,\text{low}}}} \sim \frac{R_{t,\text{low}}}{R_{t,\text{high}}} = \frac{0.68}{0.92} = 0.76
\]

\[
D_{\text{measured}} \equiv \frac{n_{\text{e,d}}^{R_{t,\text{high}}}}{n_{\text{e,d}}^{R_{t,\text{high}}}} \sim 1.2^*
\]

*Difficult to obtain \(n_{u,d}\)

\(^1\)C. Theiler et al, Nucl. Fusion 57 (2017) 072008
Experiments contradict simple predictions

- TCV experiments\(^1\) studying just the upstream density detachment threshold, \(n_{u,d}\), contradict the simple scaling.

\[
D_{\text{predicted}} \equiv \frac{n_{u,d}^{R_t,\text{high}}}{n_{u,d}^{R_t,\text{low}}} \sim \frac{R_{t,\text{low}}}{R_{t,\text{high}}} = 0.68
\]

\[
D_{\text{measured}} \equiv \frac{\bar{n}_{e,d}^{R_t,\text{high}}}{\bar{n}_{e,d}^{R_t,\text{high}}} \sim 1.2^* \]

- What leads to this difference between simple prediction and measurement?

IAEA Tech. mtg divertors, 4 Nov 2019 Vienna

\(^1\)C. Theiler et al, Nucl. Fusion 57 (2017) 072008
Strike point angle is another important divertor characteristic and is different for low- and high R_t in TCV

- Recycled neutrals are launched towards different parts of the divertor plasma for low- and high-R_t

![Diagram showing total flux expansion and strike point angle for low- and high-R_t.](image)
• JET is a good example of the effect of varying strike point angle
• Recycling neutrals ionize in different plasma regions for ‘vertical target’ and ‘horizontal target’
Strike point angle to the surface affects the ionization profile

- EDGE2D-Eirene calculations demonstrate difference in ionization
 - 'Vertical target'
 - ionization near separatrix
 - increase density; lower temperature
 - lowers detachment threshold
 - 'horizontal target'
 - ionization farther from the separatrix

![Graph showing ionization rates for 'vertical target' and 'horizontal target' with increased density and lower temperature for the 'vertical target'.]
The effect of the strike point angle on detachment was realized experimentally, early in divertor studies.

- Experimental comparison:
 - vertical target ~40% lower detachment threshold, n_{ud}
 - Most tokamaks moved to the vertical target geometry in the early 2000s
Baffle geometry also has a strong role in determining the detachment threshold

- Low R_t divertor traps neutrals between inner wall, inner and outer separatrices
Neutral trapping in the divertor favors low target R_t

- Low R_t divertor traps neutrals between inner wall, inner and outer separatrices
- Neutrals in the high R_t configuration **easily escape the divertor**
All three divertor design choices affect the detachment threshold

- Total flux expansion lowers $n_{u,d}$ for the high-R_t
- Strike point angle and neutral baffling lower $n_{u,d}$ for the low-R_t

![Graphs showing the effects of total flux expansion, strike point angle, and neutral baffling on detachment threshold.](image-url)
Define ‘neutral trapping’ to aid in comparing various effects

- We quantify the relative contributions of strike point angle and neutral baffling on the detachment threshold
 - η_{RI} is the fraction of the total divertor ionization source that occurs in a flux tube near the separatrix
 - We make this ‘measurement’ for TCV SOLPS cases

\[
\eta_{RI} = \frac{\int S_{\text{ioniz}} dV_{ft}}{\int \Gamma_{\text{tar}} dA_{\text{tar}}}
\]
As expected – an anti-correlation between $n_{u,d}$ and η_{RI}

• Detachment threshold $n_{u,d}$ appears sensitive to η_{RI}

\[D_{predicted} \sim 0.76 \]

\[D_{code} = \frac{n_{R_{t,high}}}{n_{R_{t,low}}} \sim 1.86 \]
The baffle strongly affects detachment threshold for high-R_t case

- Similar neutral confinement for high- & low-R_t; better match to total flux expansion prediction

$$D_{predicted} \sim 0.76$$

$$D_{code} \equiv \frac{n_{R_t,high}}{n_{R_t,low}} \sim 1$$

IAEA Tech. mtg divertors, 4 Nov 2019 Vienna
Having baffling AND strike point angle the same for low- and high-R_t: isolate total flux expansion effect

- Match predictions for total flux expansion!
- What else can we learn?

\[D_{\text{predicted}} \approx 0.76 \]

\[D_{\text{code}} \equiv \frac{n_{R_t,\text{high}}}{n_{R_t,\text{low}}} \approx 0.74 \]
• **Baffle** (confining recycling neutrals)
 • Raises neutral density across the entire divertor, raising density and ionization costs, accelerating detachment
 • Small effect on η_{RI} but large on $n_{u,d}$
• **Strike point angle** of ‘vertical target’
 • Raises neutral density and ionization costs on a focussed region
 • Larger effect on η_{RI}, similar for $n_{u,d}$
Contrasting the effect of neutral baffle vs strike point angle

- We expect adding vertical target to high-\(R_t\) to reduce \(n_{u,d}\) and raise \(\eta_{RI}\)

- Caveat – This analysis presented here is for TCV conditions, far from a reactor
 - However, strike point angle and neutral baffling enhancements are recognized in studies of ITER, C-Mod and AUG
 - The total flux expansion effect is straightforward and already in codes.

A. Fil et al., submitted to PPCF
• Results indicate the effect of total flux expansion is occurring but may be hidden by neutrals effects
 • It is ‘additive’, or ‘subtractive’ in this case, so an independent effect
Other implications of this study for divertor design

• These results can be generalized using the Lengyel radiation formulation to include two other ‘control’ variables\(^1\) – impurity concentration, \(C_z\), and \(P_{SOL}\):

\[
\left[\frac{n_u C_z^{1/2}}{P_{SOL}^{5/7}} \right]_{\text{detach}} \propto \left| \frac{B_{\text{tar}}}{B_x} \right| f(L, z_x / L)
\]

• Lower \(n_{u,d}\) is equivalent to detaching at higher \(P_{SOL}\) or lower \(C_z\)

\(^1\)B. Lipschultz et al, Nucl. Fusion 56 (2016) 056007
Other ‘experiments’ in SOLPS* on detachment position control

• MAST-U Detachment (seeding):

*O. Myatra, MAST-U, PSI18 poster
Other ‘experiments’ in SOLPS* indicate control increases with the magnitude of $\nabla|B|$

- Movement slows down even though seeding rate is strongly increased
- Radiation region ‘stops’ mid-divertor where $\nabla|B|$ (really $\nabla|q_{||}|$) large

*O. Myatra, MAST-U, PSI18 poster
Strong $\nabla|B|$ correlates with ‘slowing’ front movement*

• Could be $\nabla|B|$ (really $\nabla|q_{||}|$) location stabilizing effect

O. Myatra (SOLPS; MAST-U)

* B. Lipschultz et al, Nucl. Fusion 98 (2016) 056007
Detachment position vs normalized impurity fraction, \(C_z/C_{z,\text{target}} \), correlates with position vs |B|.
Model prediction1 of movement fair approximation of SOLPS ‘experimental’ results

- Reasonable agreement with model prediction*
- Tests with more equilibria needed
- $\nabla|B| (\nabla|q_{||}|)$ could be another ‘tool’ in divertor design

*B. Lipschultz et al, Nucl. Fusion 98 (2016) 056007
Summary - Control of detachment threshold and movement

To optimize minimization of the detachment threshold:

- Divertor designs should enhance baffling & optimize strike point angle
 - If total flux expansion can be accommodated it will
 - Lower $n_{u,d}$ further (and potential to optimize control of location)

Further studies needed:

- A full study over a range of strike point angles would help optimize strike point angle choice over a range of divertor plasma densities and $q_{||}$
- More study is needed of how divertor design choices affect:
 - Divertor impurity confinement (e.g. forces on impurity ions)
 - Detachment control after onset
Backup slides
Model prediction\(^1\) of detachment location movement can be used to compare to SOLPS results

- Useful for predicting general sensitivity of detachment movement, \(z\), to changes in one or more control variables, \(C_x\) and their derivative \(dz/dC_x\) (and detachment thresholds)
 - Many simplifications required for such an analytic model

\[
\frac{n_{u}f_{\text{imp}}^{1/2}}{P_{\text{SOL}}^{5/7}} \propto \frac{B[z]}{B_{x}} \left[\frac{(z_{x} - z)}{3} \left(1 + \left| \frac{B[z]}{B_{x}} \right| + \left| \frac{B[z]}{B_{x}} \right|^2 \right) + \frac{(L - z_{x})}{2} \right]^{2/7}C_{n \text{u}}\frac{C_{\text{imp}}^{1/2}}{C_{\text{PSOL}}^{5/7}} \propto A[z]
\]

- Initial control variables, \(C_x\) - impurity concentration, \(P_{\text{SOL}}\) and upstream density, \(n_u\)
- Movement in \(z\) related to
 - magnetic field profile (affects \(\nabla|B|\) and \(\nabla|q_{||}|\)) and \(z_x/L\)
 - Variation in control variables, \(C_x\), leads to a different solution and \(z\)

\(^1\) B. Lipschultz et al, Nucl. Fusion 98 (2016) 056007