ID: 7 Radiation-condensation instability: a driver for up-down or in-out asymmetry of divertor plasma A.S. Kukushkin^{1,2}, A.A. Kozhurin^{1,3} ¹NRC Kurchatov Institute, Moscow, Russia ²NRNU MEPhl, Moscow, Russia; ³Lomonosov MSU, Moscow, Russia ank755@gmail.com

MOTIVATION		DOUBLE NULL	
q_{pk} [MW/m ²] 20 17 15 10 10 10 10 10 10 10 10 10 10	Single-null: smooth, monotonic evolution of $q_{pk}(p_n)$ \rightarrow easy control	Pro: Core plasma stability with high elongation Power load spread over two divertors Contra: Difficult to reach up-down symmetry <i>Feedback?</i> Inner targets receive a	upper inner

SUMMARY

•Radiation-condensation instability causes significant up-down asymmetry of power loading q_{pk} in a symmetric double-null divertor configuration

•This makes the dependence of q_{pk} on neutral pressure p_n non-monotonic, thus making divertor control difficult and reducing operational window

•The same instability may be responsible for change in the in-out

Similar pattern with strong radiation from unstable T_e range \rightarrow RCI can be expected

• A.S. Kukushkin, S.I. Krasheninnikov, Plasma Phys. Control. Fusion 61 (2019) 074001