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What is SPARC?

• DT-burning tokamak designed to 
demonstrate net fusion energy 
production

- Q>2
- 50 MW fusion power
- Rmaj=1.8 m
- Btor = 12 T

• Based on newly developed high 
temperature superconductor technology

• Under design by Commonwealth Fusion 
Systems (CFS), MIT, and collaborators
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Comparison of high-field tokamak designs

SPARC
Rmaj=1.78 m
Rmin=0.55 m
B = 12.5 T
Mission: Q>2

ARC
Rmaj=3.3 m
Rmin=1.1 m
B = 9.2 T
Mission: Fusion reactor

ADX
Rmaj=0.73 m
Rmin=0.2 m
B = 6.5 T
Mission: Divertor testing
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Projected parameters for SPARC edge plasma and divertor

• Psol ~ 20 MW

• Narrow SOL 
• lq = 0.16 mm [1]
• lq = 0.34 mm [2]
• lq = 0.34 mm [3]

• Relatively long pulse but not 
steady-state operation, t~10 s

• Divertor design ongoing, exploring
- Single-null and double-null
- Tightly baffled long vertical leg
- Radially extended divertor leg
- Seeded impurity radiation
- Strike points sweeping [1] T. Eich, et al., NF 53.9 (2013): 093031.

[2] D. Brunner, et al., NF 58.9 (2018): 094002. 
[3] R.J. Goldston, et al., NF 52.1 (2011): 013009. 
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UEDGE setup for SPARC divertor

• Modeling lower half of up-down symmetric 
domain

• Standard collisional plasma model
• Fluid neutrals model
• Initially no drifts included
• Boundary conditions at core interface set to 

match input power and midplane plasma 
density at separatrix

• Ad-hoc anomalous transport coefficients set 
to match projected profiles and in-out power 
asymmetry

Matching projected parameters of SPARC for setting up UEDGE:
• Geometry, input power based on the design
• Midplane plasma profiles, based on empirical scaling
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Anomalous transport profiles for UEDGE SPARC model 
used as knobs for matching design projections

For matching plasma profiles and in-out power asymmetry, using:
• Radial profile of D (could use V instead as transport model)
• Transport barrier in Chi
• Levels of D and Chi on HFS
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Why use Deff increasing radially in SOL?

MAST1 NSTX2

1Harrison et al., Journal of Nuclear Materials 463, 757–760 (2015) 
2Scotti et al., Nucl. Fusion 58, 126028 (2018)

• Overwhelming evidence for enhanced radial transport in far SOL upstream
• Interchange drive responsible for enhanced plasma transport in far SOL
• Based on experiments and modeling, this mechanism apparently exists in 

the divertor as well
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Comparing four UEDGE cases for SPARC V1C

Case UE1a

• Low transport everywhere on HFS
• No impurity radiation
• Peak power flux on divertor plates
Ø outer =    1.34038D+02
Ø inner =    1.42862D+02

Case UE1a_0.1C

• Low transport everywhere on HFS
• Impurity radiation for 0.1% C
• Peak power flux on divertor plates
Ø outer =    1.35118D+02 MW/m2

Ø inner =    1.10163D+02 MW/m2

Case UE1b

• Low transport everywhere on HFS 
except inner leg region

• No impurity radiation
• Peak power flux on divertor plates
Ø outer =1.31711D+02
Ø inner =9.41024D+01

Case UE1b_0.1C

• Low transport everywhere on HFS 
except inner leg region

• Impurity radiation for 0.1% C
• Peak power flux on divertor plates
Ø outer =    1.31700D+02
Ø inner =    8.23039D+01

All use 10 MW of input power into the lower-half domain



9
Umansky et al., IAEA TM 2019 – Chart 9

UEDGE radial transport coefficients for 
cases UE1a and UE1a_0.1C
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UEDGE radial transport coefficients for 
cases UE1b and UE1b_0.1C
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UEDGE finds steady-state plasma profiles, 
consistent with SPARC design projections 

• nsepx = 1020 m-3

• Pout:Pin = 4:1

• lq = 0.16 mm

For otherwise identically same parameters, overall similar plasma profiles 
with or without altering transport in inner leg or adding 0.1%C radiation
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Plasma profiles upstream are weakly sensitive to 
altering inner leg transport or adding impurity radiation

UE1a                                                                                                       UE1a_0.1C

UE1b                                                                                                        UE1b_0.1C
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Plasma profiles upstream are weakly sensitive to 
altering inner leg transport or adding impurity radiation

UE1a                                                                                                       UE1a_0.1C

UE1b                                                                                                           UE1b_0.1C
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Plasma profiles on target plates are more sensitive to 
altering inner leg transport and adding impurity radiation

UE1a                                                                                                        UE1a_0.1C

UE1b                                                                                                        UE1b_0.1C
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Plasma profiles on target plates are more sensitive to 
altering inner leg transport and adding impurity radiation

UE1a                                                                                                          UE1a_0.1C

UE1b                                                                                                          UE1b_0.1C
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UEDGE impurity radiation for 
cases UE1a_0.1C (left) and UE1b_0.1C (right)

1.3 MW impurity radiation loss 1.4 MW impurity radiation loss

• Peak heat flux on the plate ~100 MW/m2

• Radiation localized near the plates?
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Summary

• SPARC divertor will have challenging peak heat flux due to high exhaust 
power and narrow SOL width

• UEDGE has been set up for SPARC to guide solutions for divertor design

• Initial UEDGE solutions have been obtained for SPARC, consistent with 
known empirical scalings and projections

• Sensitivity to unknown transport in divertor leg region is probed

• Impurity radiation with fixed-fraction 0.1% C results in radiation loss of 
~15% of PSOL

• A larger impurity fraction is needed to reduce significantly the peak heat 
flux (core plasma can tolerate up to 5% C impurity)

• Search for radiating impurity species and fraction ongoing with UEDGE 
to help find partially or fully detached divertor solutions for SPARC


