Scoping study of dissipative divertor scenarios for SPARC

M.V. Umansky¹, S. Ballinger², D. Brunner³, M. Greenwald², A. Kuang², B. LaBombard², J. Terry²

¹Lawrence, Livermore National Laboratory, Livermore, CA 94550, USA ²MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA ³Commonwealth Fusion Systems, Cambridge, MA 02139, USA

Presented at 3rd IAEA Technical Meeting on Divertor Concepts, 4-7 November 2019, Vienna, Austria

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by Commonwealth Fusion Systems

LLNL-POST-796122

What is SPARC?

- DT-burning tokamak designed to demonstrate net fusion energy production
 - Q>2
 - 50 MW fusion power
 - R_{maj}=1.8 m
 - $B_{tor} = 12 T$
- Based on newly developed high temperature superconductor technology
- Under design by Commonwealth Fusion Systems (CFS), MIT, and collaborators

Comparison of high-field tokamak designs

ADX $R_{maj}=0.73 \text{ m}$ $R_{min}=0.2 \text{ m}$ B = 6.5 TMission: Divertor testing

 $\frac{\text{SPARC}}{\text{R}_{\text{maj}}=1.78 \text{ m}}$ $\text{R}_{\text{min}}=0.55 \text{ m}$ B=12.5 TMission: Q>2

 $\frac{ARC}{R_{maj}}=3.3 \text{ m}$ $R_{min}=1.1 \text{ m}$ B = 9.2 TMission: Fusion reactor

- P_{sol} ~ 20 MW
- Narrow SOL
 - λ_q = 0.16 mm [1]
 - $\lambda_q = 0.34 \text{ mm} [2]$
 - $\lambda_q = 0.34 \text{ mm} [3]$
- Relatively long pulse but not steady-state operation, τ~10 s
- Divertor design ongoing, exploring
 - Single-null and double-null
 - Tightly baffled long vertical leg
 - Radially extended divertor leg
 - Seeded impurity radiation
 - Strike points sweeping

T. Eich, et al., NF 53.9 (2013): 093031.
 D. Brunner, et al., NF 58.9 (2018): 094002.
 R.J. Goldston, et al., NF 52.1 (2011): 013009.

UEDGE setup for SPARC divertor

Matching projected parameters of SPARC for setting up UEDGE:

- Geometry, input power based on the design
- Midplane plasma profiles, based on empirical scaling

(ERTICAL POSITION (m)

- Modeling lower half of up-down symmetric domain
- Standard collisional plasma model
- Fluid neutrals model
- Initially no drifts included
- Boundary conditions at core interface set to match input power and midplane plasma density at separatrix
- Ad-hoc anomalous transport coefficients set to match projected profiles and in-out power asymmetry

Anomalous transport profiles for UEDGE SPARC model used as knobs for matching design projections

For matching plasma profiles and in-out power asymmetry, using:

- Radial profile of D (could use V instead as transport model)
- Transport barrier in Chi
- Levels of D and Chi on HFS

Why use D_{eff} increasing radially in SOL?

- Overwhelming evidence for enhanced radial transport in far SOL upstream
- Interchange drive responsible for enhanced plasma transport in far SOL
- Based on experiments and modeling, this mechanism apparently exists in the divertor as well

MAST¹

NSTX²

¹Harrison et al., *Journal of Nuclear Materials* 463, 757–760 (2015) ²Scotti *et al., Nucl. Fusion* 58, 126028 (2018)

Comparing four UEDGE cases for SPARC V1C

Case UE1a	Case UE1a_0.1C
 Low transport everywhere on HFS No impurity radiation Peak power flux on divertor plates outer = 1.34038D+02 inner = 1.42862D+02 	 Low transport everywhere on HFS Impurity radiation for 0.1% C Peak power flux on divertor plates outer = 1.35118D+02 MW/m² inner = 1.10163D+02 MW/m²
Case UE1b	Case UE1b_0.1C
 Low transport everywhere on HFS except inner leg region No impurity radiation Peak power flux on divertor plates outer =1.31711D+02 inner =9.41024D+01 	 Low transport everywhere on HFS except inner leg region Impurity radiation for 0.1% C Peak power flux on divertor plates outer = 1.31700D+02 inner = 8.23039D+01

All use 10 MW of input power into the lower-half domain

UEDGE radial transport coefficients for cases UE1a and UE1a_0.1C

UEDGE radial transport coefficients for cases UE1b and UE1b_0.1C

UEDGE finds steady-state plasma profiles, consistent with SPARC design projections

• $n_{sepx} = 10^{20} \text{ m}^{-3}$

•
$$\lambda_q = 0.16 \text{ mm}$$

For otherwise identically same parameters, overall similar plasma profiles with or without altering transport in inner leg or adding 0.1%C radiation

Plasma profiles upstream are weakly sensitive to altering inner leg transport or adding impurity radiation

0.0

-0.005

0.000

 $R_{omp} - R_{sep}$ [m]

0.005

Fusion Energy

-0.005

0.000

 $R_{omp} - R_{sep}$ [m]

0.005

0.0

Umansky et al., IAEA TM 2019 – Chart 12

0.005

0.000

 $R_{omp} - R_{sep}$ [m]

0.0

-0.005

0.000

 $R_{omp} - R_{sep}$ [m]

0.005

0.0

-0.005

Plasma profiles upstream are weakly sensitive to altering inner leg transport or adding impurity radiation

Plasma profiles on target plates are more sensitive to altering inner leg transport and adding impurity radiation

UE1a

UE1a_0.1C

UE1b

Plasma profiles on target plates are more sensitive to altering inner leg transport and adding impurity radiation

Fusion Energy

UEDGE impurity radiation for cases UE1a_0.1C (left) and UE1b_0.1C (right)

- Peak heat flux on the plate ~100 MW/m²
- Radiation localized near the plates?

1.750E+00

2.625E+00

3,062E+00

3.500E+00

3 938E+00

4.375E+00

4,812E+00

5.250E+00

5 688E+00

6.125E+00

6.562E+00

Summary

- SPARC divertor will have challenging peak heat flux due to high exhaust power and narrow SOL width
- UEDGE has been set up for SPARC to guide solutions for divertor design
- Initial UEDGE solutions have been obtained for SPARC, consistent with known empirical scalings and projections
- Sensitivity to unknown transport in divertor leg region is probed
- Impurity radiation with fixed-fraction 0.1% C results in radiation loss of ~15% of P_{SOL}
- A larger impurity fraction is needed to reduce significantly the peak heat flux (core plasma can tolerate up to 5% C impurity)
- Search for radiating impurity species and fraction ongoing with UEDGE to help find partially or fully detached divertor solutions for SPARC

