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The next step after ITER is the demonstration of stable electricity production with a fusion reactor. Key design performances will have to be met by the corresponding power

plant demonstrator (DEMO), fulfilling a large number of constraints. System codes such as SYCOMORE, developed by CEA/IRFM using the EU-ITM platform [1-2], address

those questions by simulating all the fusion power plant sub-systems. SYCOMORE uses an extended [3] two point model to simulate the scrape-off layer (SOL) physics,

taking momentum losses and impurity radiation into account. As impurity radiation affects both the core and the SOL power balance, a coupling between the SOL and the

Core models is designed to find the minimal impurity fractions necessary to protect the divertor targets from both intolerable heat flux per unit of surface (qpeak) and tungsten

sputtering (maximum target plasma temperature Ttarg). This coupling allows to address the effect of divertor protection on global power plant design key figures of merits such

as the net electricity production (Pnet) or the possibility to get the H-mode [7]. This analysis will present the update of the SOL impurity radiation model in SYCOMORE, and

study the effect of the choice of the impurity seeding (Argon or Xenon) on global design performances. The effect of two key SOL parameters : the upstream power decay

length (λq) and the separatrix density value is evaluated assuming several impurity transport properties. Although the SOL seeding impurity transport (τImp) has only a

marginal effect on the global design, the nature of the impurity specie and its propagation from the SOL to the core is shown to have a significant impact on the power plant

performances.
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Impurity line radiation (fpower) [5]

o Hyp : convection transport 
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Target momentum losses (fmom)

o Scaling as a function of Ttarg [4]

Impurity Z Pnet fL-H

Argon (Ar) 18 595 MW 1.43

Xenon (Xe) 54 782 MW 1.16

DEMO (2015) design parametrisation

Considered output

o Net electric power production : Pnet

o L-H power threshold fraction [7] : 

fL-H = Psep / PL-H, martin

Xenon impurity

o Good dilution / radiation ratio

→ Better fusion power

o But : Strong sputtering 

(not captured in this analysis)

Argon impurity

o Less core line radiation

Larger separatrix power for

H mode (fL-H)

o Accessible properties

Input name Value

Minor/major radius (amin/Rmaj) 2.93/9.01 m

Toroidal filed on axis (BT) 5.66 T

95% flux safety factor (q95) 3.25

Up/low elongation 1.7/2.0

Greenwald/H fract (fGW / fH) 1.2/1.1

Heating power (Pheat) 50 MW

Input name Value

Max. divertor heat flux (qpeak) 10 MW.m-2

Maximum plasma electronic 

temperature on target (Ttarg)

5 eV

SOL/core impurity fraction 

ratio (ηImp)

5

Upstream power length (λq) 3 mm

Greenwald separatrix density 

fraction (𝑓𝑠𝑒𝑝 =
𝑛𝑠𝑒𝑝

𝑛𝐺𝑊𝑓𝐺𝑊
)

0.75

SOL impurity confinement time 

(τImp)

0.1 ms

Seeding impurity Argon

No tungsten impurity considered

Global design parameters [6] SOL parameters

SOL to core transport (ηImp)
SOL impurity transport (τImp)

Aim : Complete power plant design optimization and robustness assessment (uncertainty/sensitivity)
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