model of interchange turbulent transport: on the correlation between scrape off layer width and core confinement in tokamaks

N. Fedorczak, Mathieu Peret, Philippe Ghendrih, Patrick Tamain, Hugo Bufferand
CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France

- Spectral filament paradigm: self consistent prediction of turbulent spectra (n_e, Φ) of flux driven 2D isothermal interchange turbulence
- Predicts macroscopic transport properties (flux, fluctuations) in scrape-off layer (→ SOL width λ_q) but also in the core (→ confinement time τ_E)
- SOL transport: quantitative agreement with Tore Supra data (circular plasmas), recovers impact of divertor leg length on SOL width (λ_q) in TCV, recovers multi-machine parametric sensitivity of λ_q
- Core confinement: recovers multi-machine parametric sensitivity of τ_E and correlation between core confinement and heat flux width
- Offers a flexible paradigm for addressing the optimization of power exhaust versus core confinement (key: impact of geometry in model)

2D isothermal interchange model (TOKAM2D)

Flux driven (source S), control parameters: $g = \frac{\partial g}{\partial n}$, $\sigma_1 = \frac{\sigma_1}{n_0}$

$\frac{d n}{d t} + D^2 \frac{n}{n} = S - \sigma g e^{-\Phi}$

$\frac{d \phi}{d t} = \frac{\partial g}{\partial n} - \sigma_1 (1 - e^{-\Phi})$

$\frac{d \omega + v b^2}{\omega} = \frac{\partial g}{\partial n} - \sigma_1 (1 - e^{-\Phi})$

$\lambda_{df} = \frac{1}{(\Phi, \sigma_1)}$

$\lambda_{df} = \frac{1}{(\Phi, \sigma_1)}$

$\sigma_{df} = \frac{1}{(\Phi, \sigma_1)}$

Spectral filament paradigm: self consistent prediction of turbulent spectra (n_e, Φ) of flux driven 2D isothermal interchange turbulence

$\lambda_{df} = \frac{1}{(\Phi, \sigma_1)}$

$\sigma_{df} = \frac{1}{(\Phi, \sigma_1)}$

$\lambda_{df} = \frac{1}{(\Phi, \sigma_1)}$

$\sigma_{df} = \frac{1}{(\Phi, \sigma_1)}$