

Multi-code simulations of the gas baffle effects on TCV Lower Single Null edge plasmas

<u>D. Galassi^{1,*}, H. Reimerdes¹, C. Theiler¹, M. Wensing¹, H. Bufferand², G. Ciraolo², P. Innocente³, Y. Marandet⁴, P. Tamain², M.</u> Baquero¹, D. Brida⁵, H. De Oliveira¹, B. Duval¹, O. Février¹, S. Henderson⁶, M. Komm⁷, R. Maurizio¹, C. K. Tsui¹, the TCV team⁸ and the EUROfusion MST1 Team⁹

¹ École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

baffle

- ² CEA, IRFM, F-13108 Saint Paul-lez-Durance, France
- ⁴ Aix Marseille Université, CNRS, PIIM, UMR 7345, Marseille F-13397, France ⁶ UKAEA, CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK ⁸ See author list of S. Coda et al 2019 Nucl. Fusion 59 112023
- * e-mail: davide.galassi@epfl.ch
- Towards more reactor-relevant divertor conditions in TCV
- TCV (Tokamak à Configuration Variable) is undergoing a major upgrade [1, 2]:
- **Gas Baffles inserted**→ objective: maximize

baffle

New

_Ps

1.2

Divertor

- ³ Consorzio RFX, Corso Stati Uniti 4, 35127, Padova, Italy
- ⁵ Max Planck Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany ⁷ Institute of Plasma Physics AS CR, Za Slovankou 3, Prague 8 182 00, Czech Republic ⁹ See the author list of B. Labit et al., Nucl. Fusion 59 (2019) 086020
 - **Neutral compression predictions with SolEdge and SOLPS**
 - **SolEdge2D**: upstream conditions explored: $n_u = [1.8e19, 3.5e19] m^{-3}$

 $P_{in} = [0.3, 1.2] MW$

- \'``IIIIIIII with $n_n = n_{D^0} + 2n_{D_2}$, to facilitate detachment HFS
- Future increase in input power (~ 3x)
- \rightarrow access detachment at lower plasma density
- Improved divertor diagnostics

Strategy of simulations of baffles performances on TCV

First version of gas baffle [3] chosen based on SOLPS-ITER [4,5] simulations. Limitations: grid can be extended only up to baffle tip. **SolEdge2D-EIRENE** [6,7] 2D transport code:

- Penalization technique \rightarrow grid up to first wall
- Heat flux and recycling on baffles evaluated
- \rightarrow SolEdge2D: scan of baffle lengths

Goal: Interpretation of present experiments, guidelines for design of a new batch of baffles

SOLPS-ITER: Upstream conditions scan at fixed baffle length + drifts

Both codes: simulations baffled/unbaffled, comparison with experiments

Increasing LFS baffle length \Rightarrow ionization front movement

0.7 0.8 0.9 1 1.1 High density, low power

 $n_n (m^{-3})$

More neutrals blocked by baffles \Rightarrow better c_D improvement

High density,

high power

As in SOLPS-ITER simulations [3],

Baffle 3 optimizes c_D in attached cases

Main difference with SOLPS [8]: $\rightarrow \langle n_n \rangle_{div}$ Baffle 3 vs No Baffle: SolEdge ~ X 1.5 / SOLPS ~ X 5

Comparison with experiments: preliminary results

Outer target

Effect of baffle closure at fixed upstream conditions

	ρ_{min}	$\Delta ho \left[\lambda_q ight]$	TCV	ρ_{min}	$\Delta ho [\lambda_q]$
No Baffle	1.083	5.9	Baffle 3	1.069	4.9
HFS Baffle	1.057	4.1	Baffle 4	1.043	3.1
Baffle 2	1.120	8.6	Baffle 5	1.025	1.8

 $n_u = 1.8 \cdot 10^{19} m^{-3}$, $P_{in} = 1.2 MW$ (1/3 el., 2/3 ions) $D_0 = 0.2 \ \frac{m^2}{s}$, $\chi_0 = 1.0 \frac{m^2}{s}$, no drifts, R = 0.986Upstream profiles in the SOL almost unaffected

-No baffle -No baffle No Baffle, OSP -Baffle 2 Baffle 3. OSP -Baffle 2 Baffle 3 Baffle 3, baffle Baffle 3 Baffle 4. OSP Baffle 4 Baffle 4 [m⁻³] 0.8 N/ Baffle 4, baffle Baffle 5 Baffle 5 Baffle 5, OSP Baffle 5, baffle 1.05 0.05 0.95 -0.015 -0.01 -0.005 0.005 0.01 0.015 0 R^u-R^u_{sen} [m] $R^{u}-R^{u}_{sen}$ [m]

- Biggest effect on T_e^t , longer baffle intercepts more heat flux
- $\rightarrow \max(q_{\perp})$ on Baffle 5 comparable to outer target
- $\rightarrow \max(\Gamma_1)$ on Baffle 5 \ll outer target : ionization localized in the divertor

25	Inner target	10	Outer target

Ohmic L-mode, 140 KA, P=180kW baffle-compatible

- $D, \chi \propto \exp\left(-\frac{\theta^2}{2\sigma^2}\right)$ ~ballooning, no drifts
- Carbon regulated via recycling: $R_{C} = 0.4 \Rightarrow P_{rad}^{SolEdge} \simeq P_{rad,edge}^{Exp}$

2500

• Shape and asymmetry of target profiles in good agreement, but small shift, and $j_{sat}^{SolEdge} \simeq 2 \cdot j_{sat}^{Exp}$ $(n_{et}^{SolEdge} > n_{at}^{Exp}, T_{at}^{SolEdge} < T_{at}^{Exp})$

Conclusions

Inner target

2500

- SolEdge2D-EIRENE simulations confirm that, in attached cases, Baffle 3 maximizes c_D . $\langle n_n \rangle_{div}$ underestimated with respect to SOLPS.
- When ionization front is detached, the baffle is more effective because more neutrals would be directed to the main chamber

- Baffle 4 optimizes most of the detached cases
- HFS baffle has globally a weaker effect than LFS baffle \bullet

Ongoing work:

- SolEdge2D-EIRENE and SOLPS-ITER comparison baffled-unbaffled
- SOLPS-ITER simulations including drifts •

References	
[1] A. Fasoli et al. Nucl. Fusion, 55 , 2015	[5] S. Wiesen et al., J. Nucl. Mater., 463 Suppl. C, 2015.
[2] H. Reimerdes et al., Nucl. Mater. Energy 12 , 2017	[6] H. Bufferand et al., Nucl. Fusion 55 , 2015
[3] A. Fasoli et al., submitted to Nucl. Fusion	[7] D. Reiter et al., Fusion Sci. Technol. 47, 2005
[4] X. Bonnin et al., Plasma and Fusion Res., 11 , 2016.	[8] M. Wensing et al., Plasma Phys. Control. Fusion 61, 2019.

This work was supported in part by the Swiss National Science Foundation.

Swiss

Plasma

Center

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Third IAEA Technical Meeting on Divertor Concepts, 4 - 7 November 2019, IAEA Headquarters, Vienna, Austria