ΕΡΕ

Investigation of detachment in Double-Null configurations in the TCV tokamak

O. Février¹, S. Coda¹, C. Theiler¹, B. P. Duval¹, B. Labit¹, R. Maurizio¹, H. de Oliveira¹, H. Reimerdes¹, A. Thornton² and the TCV Team^a and the EUROfusion MST1 Team^b

- ¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland ² CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom
- ^a See author list of S. Coda et al 2019 Nucl. Fusion **59** 112023
- ^b See author list of B. Labit et al 2019 Nucl. Fusion **59** 086020

Introduction & Motivation

Divertor detachment associated with low target temperature & heat fluxes [1-2]

 \rightarrow **Attractive regime** for fusion devices

Alternative divertor configurations can provide improved detachment characteristics at outer leg (lower threshold, increased controllability...) ([2] and references therein) but risk to aggravate conditions at inner leg

Double-nulls (DN) are a promising candidate for an exhaust solution :

 \rightarrow Majority of power shared between **two outer legs.** [3,4,5]

Target measurements

 \rightarrow Total ion flux reaching floor + ceiling shows saturation & (small) rollover (behavior seen at low fx in TCV [2]) → This happens at **lower threshold** than for equivalent LSN (<n_e>≈8.5x10¹⁹ m⁻³ vs 10²⁰ m⁻³) \rightarrow Initial target ion flux higher than for LSN

olivier.fevrier@epfl.ch

PI 56

Third IAEA Technical Meeting on Divertor Concepts - 4 – 7 Nov. 2019, IAEA Headquarters, Vienna, Austria

- \rightarrow Advanced geometries can be applied to both active legs [6]
- \rightarrow Possibly increase of radiated fraction

Experimental setup

Wide range of DN configurations Typical scenario :

- $\rightarrow < n_{e} > -ramp$
- \rightarrow L-Mode, Ohmic only, I_P=300 kA
- \rightarrow Inner/outer gaps ~ 2.5cm

Main diagnostics used: Langmuir Probes [7], IR camera, Bolometry, eq. reconstruction, Multi-spectra imaging (CIII)

discharges

 \rightarrow Discharges performed in Fav./Unfav. grad B_t (always w.r.t. lower X-Point)

 \rightarrow DN configurations compared with **equivalent** LSN configurations

Magnetic balance

Magnetic balance (distance between the two separatrices) is a **critical parameter** for Double-Null experiments.

 $(\delta R_{sep}$ [distance between the two separatrix mapped upstream])

 \rightarrow Balance assessed using LIUQE (equi. reconstruction)

<n $_{\rm e}$ > [m $^{-3}$] ×10 '

 \rightarrow Integrated J_{sat} shows that both legs detach at similar <n_e> $(< n_{2} > \approx 8.5 \times 10^{19} \, \text{m}^{-3})$

Detachment of both outer legs at similar line-averaged densities, lower than equivalent LSN

 \rightarrow Integrated target ion flux show no difference vs outer target major radius [in line with previous TCV results in LSN]

 \rightarrow Infrared thermography measurements show lower power going to lower outer divertor in **DN than LSN**, and **continuous decay as <n_>** is increased, as expected.

 \rightarrow From LP and IR, most of the flux does go to OSPs, with lower power on each OSP.

CIII radiation front

Position of CIII front along outer (lower) divertor leg :

LIUQE (MATLAB

 \rightarrow Typical within [-3mm, 3mm], $\leq \lambda_{\alpha}$ (~5mm from IR)

In **TCV**, diagnostic coverage of *all* strike points not possible

In unfavourable ∇B :

- \rightarrow 50/50 power sharing for dR_{sep} =0 mm
- \rightarrow Outer leg activates earlier than inner leg
- \rightarrow With higher density, power seems to go preferentially to outer legs

Data in favourable ∇B suggest asymmetry between inner/outer leg (not shown)

\rightarrow Sensibility of results to magnetic configuration tested in dedicated <n > \approx 8 \times 10 ¹⁹ m ⁻³ Total power to lower divertor **~** 0.8 ٩ 0.6 Lower inner lec ower outer led 20 0 10 [mm]

 \rightarrow Results must be interpreted in light

of possible magnetic unbalance

 \rightarrow Taken as indicator for detachment [1,8]

Repeating shots in fav/unfav. gradB, reconstruct CIII movement along both outer legs

 \rightarrow Both legs detach at approx. same time, in agreement with LP.

→ Movement of CIII front earlier in DN **configurations** (lower threshold)

Threshold similar for different R₁: • Opposite to 2PM expectations Consistent with previous TCV exp.

Confirms that the non-observation of R_t –effect [2] is **not** due to a change of power sharing between inner/outer targets

12

Conclusions

First results of detachment physics in Double-Null in TCV show :

Radiation

- Higher radiated fraction for a given $\langle n_{e} \rangle$ (between 10% 35% higher) than in LSN
- Access to detached regime of both legs at similar <n_e>, lower threshold than in LSN (~ 20% difference)
- As in previous LSN studies, no clear evidence of a R_t-effect for the detachment onset.
- \rightarrow Power sharing between inner/outer leg not responsible for this effect in LSN

 [1] A. W. Leonard <i>et al</i> 2018 <i>Plasma Phys. Control. Fusion</i> 60 [2] C. Theiler <i>et al</i> 2017 <i>Nucl. Fusion</i> 57 072008 [3] Petrie <i>et al</i> 2001 <i>J. Nucl. Mater.</i> 290 [4] G.De Temmerman <i>et al</i> 2011 <i>J. Nucl. Mater.</i> 415 	5] D. Brunner et al 2018 <i>Nucl. Fusion</i> 58 076010 6] G. Fishpool et al 2013 <i>J. Nucl. Mater.</i> 428 7] De Oliveira <i>et al</i> 2019 <i>Rev. Sci. Instrum</i> 90 , 083502 8] J. R. Harrison <i>et al</i> 2016 <i>Nucl. Mater. Energy</i> 12	This work was supported in part by the Swiss National Science Foundation.
--	--	---

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

