

4-7 Nov. 2019 Third IAEA Technical Meeting on Divertor Concepts IAEA Headquarters, Vienna, Austria

Radiative divertor experiments with Ne, N, and Kr seeding in LHD

<u>Kiyofumi Mukai^{1, 2}, Suguru Masuzaki¹, Yuki Hayashi¹, Chihiro Suzuki¹, Tetsutaro Oishi^{1, 2},</u> Masahiro Kobayashi^{1, 2}, Hirohiko Tanaka³, Byron J. Peterson^{1, 2}, and the LHD Experiment Group¹ ¹NIFS, ²SOKENDAI, ³Graduate School of Engineering, Nagoya University mukai.kiyofumi@nifs.ac.jp

ID: 48

Abstract

- Radiative divertor using impurity seeding is investigating to realize divertor heat load reduction with (i)Toroidal symmetry, (ii)High radiation fraction, (iii)Stable sustainment, (iv) High core plasma performance.
- In N₂ seeded plasmas, radiation enhancement strongly localized along magnetic field line in ergodic layer. It indicates that N₂ seeding is useful for additional radiative cooling.
- In Ne seeded plasmas, toroidal symmetry of divertor heat load reduction depends on n_{o} and T_{o} at LCFS before Ne seeding.

Divertor Detachment in Ne Seeding

Toroidal symmetry of q_{div} depends on n_e and T_e at LCFS before Ne seeding.

— 4.05 s

— 4.15 s

— 4.25 s — 4.35 s

— 4.45 s - 4.55 s

- 4.65 s

• Using Kr+Ne superimposed seeding, high-performance heat load reduction was achieved. Here, pre-seeded Kr emission was enhanced by Ne seeding. It indicates the controllability of radiation enhancement using another impurity seeding.

Background

- "Toroidal symmetry", "high radiation fraction", "stable sustainment", and "high core plasma performance" is desired in helical devices.
- Ne: Symmetry, N₂: Asymmetry (also W7-X)

Q: What is the reason of toroidal asymmetry?

 $\rightarrow n_{e}$ (Ne, N) and P_{NBI} (Ne) dependence • Radiation fraction $(f_{rad} = P_{rad} / P_{NBI})$: ~ 50% (transitional), ~ 30% (stable)

Q: Can stable heat load reduction with higher f_{rad} be achieved using multi-species impurity seeding with different cooling rate? -> Kr+Ne superimposed seeding

F. Effenberg et al., NF 2019

E shielding

n_^{LCFS} (10¹⁹m⁻³)

(keV)

<u>Time evolution in n-T diagram (Ne seeded plasmas)</u>

Symmetry	Asymmetry
<accumulation></accumulation>	<shielding></shielding>

after the Ne seeding.

-> The symmetry / asymmetry is

determined by the plasma

Time evolution of Ne profile

Ne reached around LCFS.

• q_{div} increased with exhaust of Ne.

affect the symmetry / asymmetry.

-> Accumulation / shielding of Ne

• In the case of symmetry,

condition before the Ne seeding.

Experimental Setup on LHD

<Divertor probes>

- 7/10 toroidal sections

- 20 pins / each array

- L&R arrays / each section

H. Tanaka *et al.,* NME 2017

• Characteristics of accumulation/shielding before Ne seeding is related to toroidally symmetric/asymmetric reduction of q_{div} .

• Shielding region (3) is different from previous study. $\rightarrow T_i$ measurement is required.

Divertor Detachment in Kr+Ne Seeding

Stable detachment with higher f_{rad} (~40%) and toroidal symmetry was achieved.

- Kr emission was enhanced after Ne seeding.
- Ne emission was not affected by Kr. • After Ne seeding, T_{e} decreased only around plasma edge region. -> Kr emission region was expanded slightly inside LCFS.
- This detachment is occurred only in

Divertor Detachment in N₂ Seeding

- Plasma radiation enhancement occurred in ergodic layer along magnetic field line connected to N_2 seeding port.
- Plasma radiation is toroidally localized. (Toroidal section $3 \rightarrow 6.5$ and $8 \rightarrow 3$)
- This localization is weakened with increase of n_{e} .

#152074 N

ch1 ch12

Conclusion

- •<N₂> Radiation enhancement strongly localized along magnetic field line in ergodic layer. -> Availability for additional radiative cooling
- <Ne> Toroidal symmetry of q_{div} depends on n_e and T_e at LCFS before Ne seeding. Further investigation of impurity shielding effect is required.
- •<Kr+Ne> High-performance heat load reduction was achieved. It indicates the controllability of radiation enhancement using another impurity seeding. The isotope effect i.e. recycling should be investigated.

Acknowledgements

•This work was supported by JSPS KAKENHI Grant Number JP19H01878, JP17K14900 and by NIFS/NINS Grant Number NIFS16ULHH038.