Detachment introduction

- **Detachment:** Simultaneous reduction T_e, n_e
- **Requires:**
 - Particle losses ($\text{ion sink/ power limitation}$)
 - Power losses
 - Momentum losses

Density ramp

- Analysis: Balmer n=5,6 atomic only
- n_e ~ 1.6

Particle balance

- Power balance

Power (kW)

- P_{rec}
- P_{alpha}
- P_{ion}

SOLPS (syn. diag)

- Total (Attenuated, vib. states)
- Atomic
- Molecular (SOLPS)
- Molecular (AMUEL, vib. states)

Da measurements

- Measured
- Estimated (atomic)

Post-processed SOLPS: AMUEL (vib. states)

Spectroscopic analysis

- Assume all "missing" Da \rightarrow plasma-molecule

Molecular \rightarrow Total - Atomic

Existing atomic/particle sink source analysis

- **Balmer line ratio**
- **Ionisation rate**
- **Recombination rate**

Molecular particle/power sink source analysis; with Yacara [4]

- Separate mol. $	ext{De}$ in $\text{D}_1, \text{D}_2, \text{D}_3$ parts

Iterative scheme

- $	ext{De} \rightarrow \text{D}_1, \text{D}_2, \text{D}_3$
- 1 X rad./rec.
- per De photon ratios

Estimation mol contributions; other Balmer lines

Preliminary results

- Density ramp
- Spatial profiles (n_e, n_{ion})

Balmer order:

- Ion target current
- Ionisation
- Recombination
- MAR H^+_i

Particle losses

- 108 ions/s

Hydrogenic radiation (kW)

- Total
- MAR H^+_i

Break-down of Da

- Fulcher (600-616 nm) emission (\simeq 2 10^9)

Core Greenwald fraction

- Increased hydrogenic radiation (mostly D_1^+)
- Increased ion losses (MAR) (due to D_1^+ & D_2^+) - larger than electron/ion recombination (EIR)
- Ionisation - MAR/EIR $<$ ion target flux
- Onset of D_1^+ MAR near power limitation
- Detachment, followed by D_1^+ MAR and EIR
- Increase ion source (MAI D_1^+ & D_2^+) negligible

Preliminary conclusion / DEMO implications

- De emission & anti-correlation De & I, cannot be explained with atoms
- Additional De could be due to D^- (and/or D^+) - only high with CX & vib. states
- Additional De does not appear during N_2 seeding

- Particle/powers losses plasma-mol. interactions have been analysed experimentally
- Power losses: significant plasma-mol. rad. in hydrogen spectra during detachment (similar to atomic excitation radiation); losses mol. bands small [6];
- Particle losses/gains: significant MAR larger than EIR
- Plasma-mol. interaction can influence Balmer & Lyman series lines

- The inclusion of those losses in plasma-modeling codes may be limited
- Important for extrapolating to DEMO

Emission / absorption

- Lyα (~40%)
- Lyβ (~40%)

Plasma-mol. implications for opacity

- Different location Lyβ, Lyα emission \rightarrow opacity of both significant

Notes:

1. K. Verhaegh et al. NF, 2019
2. K. Verhaegh et al. PFC, 2019

Additional notes:

- Figure credits: CCFE/CCF
dna:

Contact:

kevin.verhaegh@ukaea.uk

Acknowledgements:

Third IAEA Technical Meeting on Divertor Concepts, 5 Nov, 2019, IAEA Headquarters, Vienna, Austria

Keywords:

- Molecular particle/power sink source analysis
- Balmer order
- Lyα, Lyβ
- Plasma-mol. implications for opacity
- Emission / absorption
- Power losses: significant plasma-mol. rad. in hydrogen spectra during detachment (similar to atomic excitation radiation); losses mol. bands small [6];
- Particle losses/gains: significant MAR larger than EIR
- Plasma-mol. interaction can influence Balmer & Lyman series lines

Disclaimer:

This work has been carried out within the framework of the EURATOM Consortium and has received funding from the European research and training programme 2008-2013, under grant agreement No 332093. The views and opinions expressed here do not necessarily reflect those of the European Commission.