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1. Introduction: Power Exhaust

= Power exhaust is a key
challenge in future tokamaks

= Divertor power loads need
to be reduced significantly

= Controlled seeding of

iImpurities like Ar or N q,~ (?T?RII)”mZ
= Radiative power

dissipation: strongly

reduced target temper-

atures and power fluxes g, 50 MW/m?

(geom. effects /

= Main task: maximizing the flux expansion)

radiative power dissipation
and minimizing the impact
on the confined plasma

Material Limits:
q,<5-10 MW/m?
T.<5eV [1,2,3]

2. Radiation Efficiency: Arvs. N

= Arrad. efficiency is higher in hot regions (— SOL & core)
= N radiates more efficiently only below ~ 5eV (— divertor)
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4. SOLPS 5.0 Impurity Seeding Scans
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= Trade-off between pedestal top temperature drop and fuel dilution by
Mo° rop] mixing both impurities — further studies required to identify “optimum” ratio

3. SOLPS 5.0 Modeling

Simulations in this work:

= Computational grid based on AUG H-mode shot #29256 5]

= Electron density at the midplane separatrix: 2.5 - 10*° m™3

= |nput power (heat flux crossing the core boundary): 5SMW

= No drifts terms are activated (challenging due to numerical instabilities)

= Ar and N seeding, up to 1.8 - 1021 % (electron equivalent)

L Seeding scans as pure “code experiments”

6. Expected Impact of Drifts

* Increased inner / outer target temperature asymmetry with
hotter outer target & colder inner target (strongest impact
at low densities and at the inner target) [6]

= Formation of the high-field side high density region [7]
= |onization fronts shifted further away from the target [s]
= Poloidal particle flux in the SOL towards the outer divertor

= |Impurity redistribution (as discussed in this contribution)
possibly mitigated

/. Conclusions

Seeding scans:
= Lowest impact on the ped. top temperature with N
= Lower fuel dilution with Ar seeding

* Trade-off with mixed impurities — further studies required
to develop a rule of thumb for an “optimum” mixing ratio

SOL transport:

* |nverted main ion flow patterns (due to modified ionization
sources) and increasing thermal forces on the impurities

= Reversed impurity flow & shifted density distribution
Divertor retention:

= Determined by the relative positions of the neutral impurity
lonization front and the impurity stagnation point

= Both shifted away from target with increasing seeding
= Competition between both mechanisms

= Preliminary result: shift of ionization front dominates
— more leakage at higher impurity seeding levels

Impact of drifts:

=  Will be critical and might (quantitatively) alter the results

5. Argon Impurity Transport & Divertor Retention

Forces acting on the impurities

= Friction force Fr, < (up+ — Ujmyp),

equalizing

» Thermal force F;;, < VT — deviation
of impurity flow from main ion flow

= Vp and electrostatic forces negligible

Impurity and main ion flows

* |ncreasing F;; towards the inner
divertor at increasing seeding levels Parallel distance [m]

= Fy, Induces an equivalent Fr,. = —Fy,
— forces well balanced in steady state

= |mpurity seeding modifies VT, and
therefore, F;p,
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* |nverted main ion plasma flow pattern at higher seeding levels
I\ = Caused by modification of the deuterium ionization sources in the divertor regions

LQW seeding High seeding 2 Strong & sudden* modification of the impurity density distribution at the transition
*(“sudden” in terms of the impurity seeding, i.e., as a function of the seeding level)

| Modified
\ flow pattern .

Argon SOL flows

N = High seeding: vice versa

= Strongly modified impurity flow pattern

(due to friction between main ions and impurities)

= Low seeding: no impurities can move from outer to inner divertor through the SOL
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lonization front position
= Lower T — shifted away from target

* More particles reach beyond impu-
rity stagnation point & can escape

= Indicates increasing divertor
leakage with higher seeding

Competition between divertor retention and leakage due to shifted ionization front and stagnation point positions

Impurity stagnation point

— —cfr(uD+ — uimp)

Up+ = —Fen/cpr

= Fth/CfT X

With Fy, o Z2 - VT and cs,  —=

T3/2.yT
n

2

T3/2

[9]

= Stagnation point shifted away from
the target with decreasing temperatures

> Indicates enhanced divertor retention with higher impurity seeding level
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