

Importance of divertor physics modeling in system design of helical reactor

Takuya Goto, <u>Masahiro Kobayashi</u>, Nagato Yanagi

National Institutes of Natural Sciences, National Institute for Fusion Science, Toki, Gifu, Japan

Introduction

- Step-by-step development strategy^[1] has been proposed towards LHD-type helical fusion power plants and 3 designs have been proposed.
 - **FFHR-b1** (CTF): compact reactor (R = 3-5 m) which aims to breakeven condition (Q > 1)with beam-driven fusion
 - **FFHR-c1** (Experimental/Prototype) : medium size reactor ($R \sim 10$ m) which aims to electric breakeven condition ($P_{e,net} > 0$)
- 16 12 **FFHR-d1** (DEMO): commercial-scale reactor R [m] $(P_{e,net} \sim 1 \text{ GW})$ with a self-ignition plasma

Design window analysis

- Reactor size (R_c) and the magnetic field (B_c) were scanned.
- Plasma pressure is estimated by direct profile extrapolation^[4] from the reference LHD experimental data

$$p_e(r) = \gamma_{\text{DPE}} \hat{p}(r) P_{\text{abs}}^{0.4} B^{0.8} n_e(r)^{0.6},$$

$$\hat{p}(r) = \frac{p_{e,\text{exp}}(r)}{P_{\text{abs},\text{exp}}^{0.4} B_{\text{exp}}^{0.8} n_{e,\text{exp}}(r)^{0.6}},$$

$$\gamma_{\rm DPE} = \left\{ \frac{\left(P_{\rm dep} / P_{\rm dep1} \right)_{\rm avg}}{\left(P_{\rm dep} / P_{\rm dep1} \right)} \right\}^{0.6}.$$

- Design parameters of these designs was selected by considering the following 3 factors:
 - Core plasma performance (fusion power)
 - Space for blanket (TBR, neutron shielding performance)
 - Stored magnetic energy (engineering difficulty, construction cost)

Design window analysis for the LHD-type helical reactor including the design points of the proposed designs with a consideration on the divertor heat load has been conducted.

Systems code HELIOSCOPE

- Systems code is an assembly of simple algebraic models for all components in fusion power plant system.
- HELIOSCOPE (Heliotron Systems Code for Plant Performance <u>Evaluation</u>) is a systems code for LHD-type heliotron system^[2] which enables: tion between coil ometry and coil

coil geometry and

magnetic surface

- Plasma performance analysis with an arbitrary radial profile and 3D
- magnetic geometry
- SC coil design considering actual shape of 3D helical coils
- Cost and plant power balance analysis considering all components/facilities in the fusion power plant

coil and magnetic

field structure

engineering parameters

Divertor heat load Γ_{div} is estimated using a simple model:

 $\Gamma_{\rm div} = P_{\rm div}/S_{\rm div}, \ S_{\rm div} = S_{\rm div,LHD}(R_{\rm c}/R_{\rm c,LHD})^2.$

- This model is based on the following facts:
 - LHD-type system has a rigid divertor field structure that is less sensitive to the core plasma state
 - In the LHD experiment, strong correlation is observed between the particle flux (ion saturation current) and the connection length of the lines of the magnetic force^[3]
 - If the shapes of two reactors are similar to each other, the magnetic field structures including the divertor region are also similar to each other

• The total power to divertor region is estimated as follows:

Contours of fusion gain Q, fusion power P_{fus} , minimum distance between helical coil and plasma $\Delta_{\rm blk}$ (space for the blanket module) and average divertor heat load (color contour).

	FFHR-b1 (CTF) *one example	FFHR-c1 (Exp./PROTO)	FFHR-d1 (DEMO)	ITER	JA Tokamak DEMO ^[5] ** w/ increasing elongation and seeding
<i>R / a</i> [m]	3.9 / 0.58	10.92 / 1.6	15.6 / 2.5	6.2 / 2.0	8.5 / 2.42
<i>B</i> _c [T]	5.7	7.3	~5	5.3	5.94
$P_{\rm fus}$ [MW]	~15 (w/ beam fusion)	380	3000	500	1462 (1694)**
$f_{\rm He}/f_{\rm Ar}$ [%]	5 / 0	5 / 0	5 / 0	<5 / NA	7 / 0.25 (0.6)**
$P_{\rm rad}$ [MW]	~0.1	45	200	~70	82 (177)**
$P_{\rm aux}$ [MW]	~20	30	0	73	84 (96)**
$P_{\text{div}} (= P_{\alpha} + P_{\text{aux}} - P_{\text{rad}}) \text{ [MW]}$	~23	60	400	~100	294 (258)**
$P_{\rm div}/R$ [MW/m]	~6.0	5.5	35	16	35 (30)**
$\Gamma_{ m div}$ [MW/m ²]	~12	3.8	13		

Simple linear scaling of divertor wetted area with machine size predicts modest AVERAGED divertor heat load in FFHR (helical DEMO), while non-uniformity of heat load distribution in helical

 $P_{\rm div} = P_{\alpha} - P_{\rm brem} + P_{\rm aux}$.

Summary

- Heliotron configuration may benefit from the wide divertor surface area distributed in helical direction, i.e., in both poloidal and toroidal directions.
- The PEAK divertor heat load, however, can become high, > 20 MW/m² due to the non-uniformity of the magnetic footprint in helical direction.
 - \succ Detached operation or radiation cooling in SOL/div. region with a large fraction (~80%) is necessary if the divertor with a solid target is used.
- Establishment of simple calculation models (a function of primary design parameters) for the following factors is desired to conduct design window analysis from the viewpoint of a consistent divertor design.
 - Divertor heat load profile (or wetted area)
 - Achievable radiation cooling fraction in SOL/div. region compatible with core plasma

References

[1] J. Miyazawa et al., Fusion Eng. Des. **146** (2019) 2233.

[2] T. Goto et al., Nucl. Fusion **51** (2011) 083045.

[3] S. Masuzaki et al., Contrib. Plasma Phys. **50** (2010) 629.

[4] J. Miyazawa et al., Nucl. Fusion **54** (2014) 043010

[5] N. Asakura et al., Nucl. Fusion **57** (2017) 126050.