Baffled and non-baffled Super-X studies on TCV

C. Theiler¹, A.J. Thornton², C. Colandrea¹, H. De Oliveira¹, B. Duval¹, O. Février¹, A. Fil³, D. Galassi¹, S. Gorno¹, J. Harrison², B. Labit¹, B. Linehan⁴, B. Lipschultz³, L. Martinelli¹, R. Maurizio¹, A. Perek⁵, H. Reimerdes¹, U. Sheikh¹, C. Tsui^{6,1}, K. Verhaegh², M. Wensing¹ and the TCV Team^a and the EUROfusion MST1 Team^b

¹EPFL-SPC, Lausanne, Switzerland, ²CCFE, Oxon, UK, ³York Plasma Institute, York, UK, ⁴MIT-PSFC, Cambridge, USA, ⁵DIFFER, Eindhoven, NL, ⁶University of California-San Diego, La Jolla, USA

^a See author list of S. Coda et al 2019 Nucl. Fusion **59** 112023; ^b See author list of B. Labit et al 2019 Nucl. Fusion **59** 086020

Background

- Total flux expansion (increasing R_t) in Super-X divertor is expected to reduce the detachment threshold and provide a wider detachment window
 - \circ Modified 2pt. model prediction^[1,2]:

$$T_e^t \propto \frac{1}{R_t^2}$$
 $n_e^t \propto R_t^2$ $n_e^u(T_e^t = const.) \propto \frac{1}{R}$

 $\circ~$ Behavior confirmed by SOLPS in "box" divertor $^{[3]}$

MAST-U implementation of a Super-X

Target profiles vs R_t

- J_{sat,||} profile shape changes with R_t, especially without baffles. Changing SOL transport?
- > n_e^t and T_e^t fairly independent of R_t

- $\circ~$ Wider detachment window expected from $q_{||} \propto 1/R$ dependence of parallel heat flux $^{[4-6]}$
- Past density ramp experiments on TCV **did not show** expected benefits^[7], despite 70% variation in R_t
- Recent SOLPS simulations^[8] of intermediate R_t cases largely reproduce these experiments
- R_t effect masked by difference in neutral trapping
- Simulations predict R_t effect recovered if
- **1. Target poloidal incidence angle** β matched
- 2. Gas baffles added

Goal of present work

Guided by the SOLPS simulations of [8], revisit the role of total flux expansion in

Detachment access

- Performed density ramps at different, fixed values of R_t
- Infer density threshold for detachment in two ways:
- 1. integrated, outer target ion flux at maximum
- 2. CIII emission front at 15 cm below X-point

R_t scans, attached

Radial scan of outer target at constant density (250kA, Rev. B, attached)

2pt. model predicts

- $J_{\text{sat,||}}$ to scale as $\propto R_t$
- Total target ion current to scale as $\propto R_t^2$

- Peak j_{sat,||} drops with R_t; slightly less so with baffles
- Total current increases

- Detachment threshold from LPs and CIII front very similar (except for the two non-baffled shots)
- > Threshold reduced with baffles, especially for PFR fueling
- > For baffled shots, data better ordered by β than R_t
- > A subset of shots with closely matched β for different R_t: shows threshold reduction^{*}, but weaker than predicted:

Conclusions

Guided by SOLPS simulations^[8], the R_t effect on target profiles and

only with baffles, but trend weaker than $\propto R_t^2$

"HFS baffle" and "no baffle" cases show same behavior (not shown) detachment onset have been revisited in TCV L-mode, rev. B plasmas

- In attached conditions, J_{sat} vs R_t does not follow the 2pt. model prediction; with baffles, agreement is better
- Consistent with SOLPS and SOLEDGE-2D simulations, baffles^[8,12,13] and target angle $\beta^{[8]}$ are found to influence the detachment threshold
- With baffles and for constant β , limited dataset suggests that R_t effect on detachment is partly recovered
- Next: Extend dataset and pursue H-mode studies^[14]

 [1] Petrie <i>et al.</i>, NF 53, 113024 (2013) [2] Kotschenreuther <i>et al.</i>, NF 50 035003 (2010) [3] Moulton <i>et al.</i>, PPCF 59, 065011 (2017) [4] LaBombard <i>et al.</i>, NF 55, 053020 (2015) [5] Kotschonrouther <i>et al.</i> PoP 20, 102507 (2013) 	 [6] Lipschultz <i>et al.</i>, NF 56, 056007 (2016) [7] Theiler <i>et al.</i>, NF 57 072008 (2017) [8] A. Fil <i>et al.</i>, subm. to PPCF [9] Reimerdes <i>et al.</i>, NME 12, 1106 (2017) [10] Easoli <i>et al.</i> NE in press 	 [11] De Oliveira <i>et al.</i>, RSI 90, 083502 (2019) [12] Wensing <i>et al.</i>, PPCF 61, 085029 (2019) [13] Galassi <i>et al.</i>, this conference [14] Harrison et al., PPCF 61, 065024 (2019) 	This work was supported in the Swiss National Scie Foundation.
[5] Kotschenreuther <i>et al.</i> , PoP 20 , 102507 (2013)	[10] Fasoli <i>et al.</i> , NF, in press		roundation

Swiss Plasma Center

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

3rd IAEA Technical Meeting on Divertor Concepts, 4-7 Nov. 2019, IAEA Headquarters, Vienna, Austria